SCORING MEMBERS OF A SET DEPENDENT ON ELICITING PREFERENCE DATA AMONGST SUBSETS
SELECTED ACCORDING TO A HEIGHT-BALANCED TREE

Background

[01] A number of applications exist in which it is desired to collect crowd-based scoring of a
diverse set of choices. For example, opinion polls can be used to develop predictions for outcomes of
sporting events and elections; prediction markets can be used to derive forecasts based on individual
behavior expressed through social games, trading of actual or virtual stocks, and other mechanisms. Yet
another exemplary application includes systems that make recommendations for movies, music, books
and other content, based on tracking the past behavior of individuals or certain demographics and
sometimes based on soliciting preferences ("votes") between hypothetical choices. Many other
applications exist. Irrespective of application, these systems are often manifested as software running
on a computer (e.g., standalone computer, portable device, smart phone, server, diverse network
machines or some other form of one or more instructed-machines). This software performs automated

polling or collection of data, and scoring of results.

[02] While generally useful for their intended purposes, these systems generally are poor at
extracting group preferences as the number of possible choices increases. For example, each individual
in a group can be asked to order available choices as a set or to vote between each possible pair of
choices. However, some individuals are daunted by the time needed to order a large set of choices or to
vote between many combinations, and therefore do not participate. Some individuals do not take the
time to view and evaluate each choice before voting, and so, express their results in a biased manner. It
can be computationally intensive to collect preference data between each possible pair of choices.
Finally, some individuals vote on some choices (e.g., their favorites) but not all possible choices,
rendering it difficult to interpret relative scores where the voting weights are different. The
consequence of these issues is that the mentioned-systems can produce results based on a sparse,
biased subset of group beliefs, and it can become difficult to generate a comprehensive, accurate

scoring across all possible choices.

[03] What is needed are systems, machines, software and techniques that address the
aforementioned problems. The present invention satisfies these needs and provides further, related

advantages.

Page 1 of 35
Application
2013044 / Spigit



Brief Description Of The Drawings

[04] FIG. 1A shows a block diagram associated with scoring members of a set.

[05] FIG. 1B shows the method of FIG. 1A in the context of various options and possible
applications.

[06] FIG. 1C shows one exemplary platform for implementing the structure depicted in FIGS. 1A
and/or 1B.

[07] FIG. 2A shows a binary tree used to explain extracting an individual's preferences for various

movies; in FIG. 2A, movies "moviel" through "movielQ0" have already been positioned within a binary

tree, and it is desired to place "moviell" within the depicted tree.

[08] FIG. 2B exemplifies one method of height-rebalancing for the binary tree of FIG. 2A, invoked

when and as the addition of moviell triggers a rebalancing threshold.

[09] FIGS. 3A-3Q are used to explain rules associated with red-black tree manipulation, with

numeral 301 being used to denote the tree as it is being formed.

[010] FIG. 3A shows the placement of a first node 302, and its coloration as "black" (i.e., with
hatched fill).
[011] FIG. 3B shows placement of a second node 303 to the right of the first node 302 (e.g.,

indicating that the choice represented by the second node 303 is preferred to the first node 302); the

second node 303 is colored "red" (solid fill) in accordance with traditional red-black coloring rules.
[012] FIG. 3C shows placement of a third node 304 to the left of second node 303.

[013] FIG. 3D shows clockwise rotation of the second and third nodes 303 and 304, to invert their

locations; a rotation operation is denoted by graphic 305.

[014] FIG. 3E shows a second, counterclockwise manipulation of all three nodes 302, 303 and 304

(including establishment of a new root node), as depicted by graphic 305.

Page 2 of 35
Application
2013044 / Spigit



[015] FIG. 3F shows recoloring of nodes 302 and 304 in associated with specific red-black tree

manipulation rules discussed herein.

[016] FIG. 3G shows addition of a fourth node 306 to the binary tree 301.

[017] FIG. 3H shows recoloring entailed by the addition of the fourth node 306 in FIG. 3G.

[018] FIG. 3l shows the addition of a fifth node 307 to the binary tree 301.

[019] FIG. 3J shows the rotation of the second, fourth and fifth nodes 303, 306 and 305 in a

clockwise direction, as denoted by graphic 305.

[020] FIG. 3K shows the addition of a sixth node 308 to the binary tree 301 and related recoloring
of nodes 303 and 307.

[021] FIG. 3L shows the addition of a seventh node 309 to the binary tree 301.

[022] FIG. 3M shows the addition of an eighth node 310 to the binary tree 301.

[023] FIG. 3N shows the addition of a ninth node 311 to the binary tree 301.

[024] FIG. 30 shows recoloring of the firth node 307, the sixth node 308 and the seventh node

309 as a consequence of the addition of the ninth node 311 of FIG. 3N.

[025] FIG. 3P shows clockwise rotation of nodes 311, 308, 307, 306, 303 and 309 entailed by the
addition of the ninth node 311 of FIG. 3N, as indicated by graphic 305; note that node 310 has been

moved to depend from node 306.

[026] FIG. 3Q shows the ensuing counterclockwise rotation of all nodes of the binary tree 301
through the root node as a consequence of the addition of the ninth node 311 of FIG. 3N, and

associated recoloring; note that a new root node (node 307) is established because of this rotation.
[027] FIG. 4 is a block diagram used to discuss scoring options.

[028] FIG. 5A shows a screen shot presented by one hypothetical web page, used to solicit an

individual's preference between multiple choices.

[029] FIB. 5B shows a screen shot presented by one hypothetical web page, used to display results

of scoring and/or voting.

Page 3 of 35
Application
2013044 / Spigit



[030] The subject matter defined by the enumerated claims may be better understood by
referring to the following detailed description, which should be read in conjunction with the
accompanying drawings. This description of one or more particular embodiments, set out below to
enable one to build and use various implementations of the technology set forth by the claims, is not
intended to limit the enumerated claims, but to exemplify their application. The description exemplifies
methods and devices, especially as software or a network service, supporting use of a height-balanced
tree to govern the eliciting of relative preference data between discrete subsets of an overall set, with
the result that relative preference data scoring need not be obtained between every possible subset
combination of members of a large set. While the specific examples are presented, the principles

described herein may also be applied to other methods, devices and systems as well.

Detailed Description

[031] This disclosure provides methods, devices and systems supporting use of a height-balanced
tree to enable eliciting of relative preference data between discrete subsets of an overall set, with the
result that relative preference data need not be obtained between every possible pairwise permutation

of members within the overall set.

[032] These methods, devices and systems can be applied in a number of applications in which it
is desired to score (or rate or sort) members of a set. For example, polling can be used to determine
preferences of a group. While forecasting, such as to predict outcome of political elections is one
common example of polling, there exist many applications of polling to everyday life. For example, one
hypothetical embodiment discussed below (with reference to FIGS. 5A and 5B) is for a television
network wishing to determine viewer interest in alternative football game to air in a specific time slot.
Similarly, these techniques can be applied to stock markets or other information markets to predict
futures of various types; in one contemplated application, a corporate forecasting tool elicits
information from corporate employees, and uses this information to forecast quarterly or annual
results. The methods, devices and systems can also be applied to audience voting (e.g., to determine
the winner of a talent contest), gaming and to many other applications where it is desired to score, rate
or sort members of a set. Note that the voting or expression of interest need not be explicit, e.g., it is
possible to infer an individual's preferences from behavior such as from user viewing of certain web

pages or other types of actions.

Page 4 of 35
Application
2013044 / Spigit



[033] Generally speaking, embodiments are discussed below as instructions stored on non-
transitory machine readable media (e.g., software) which are adapted to cause one or more machines
(e.g., computers) to take certain actions when those instructions are executed. The techniques
described herein can be applied to standalone software, network software (e.g., running on diverse

machines), as a web- or other network service, or in another desired manner.

l. Introduction.

[034] A few hypothetical examples might help exemplify the benefits provided by the teachings
herein. If it be assumed that a hypothetical set consists of 30 members, each pairwise combination
might conventionally require a minimum of 30-choose-2 combinations (or 435 comparisons) to evaluate
relative preferences between each possible alternative. Conventionally, this type of evaluation might be
considered computationally prohibitive depending on application, and it would be common for the set
to might-be evaluated in a number of alternative ways (e.g., by asking individuals to select "their top 3
choices," or to have voting limited to pre-cast brackets), and to aggregate voting on this basis. However,
the techniques discussed herein would instead require far fewer comparisons (e.g., typically no more

than approximately 100 comparisons for this hypothetical to completely evaluate all members of the

set).
[035] The disclosed techniques can be applied in different ways.
[036] In one implementation, a complete binary tree representing members of the set (i.e., each

possible choice) is built for an individual; N members at a time are selected as subsets for which relative
comparison data is to be elicited. Based on each comparison iteration and consequent preference data,
each member of the set is associated with a node in the tree structure. As the binary tree is built, other
members of the set are then compared to the tree structure, to also obtain preference data for these
new members and associated them with new nodes in the tree structure. Note that to reduce the
number of such operations, as the new nodes representing each member are added to the tree, the tree
is periodically rebalanced in terms of its height. For example, one type of tree (discussed below for
certain embodiments) is a red-black tree structure, which uses certain rules to continually test the tree
for height balance and, as appropriate, to rebalance the tree in terms of its height. Other types of trees

(i.e., other than red-black or binary trees) can also be used, depending on embodiment. Once all

Page 5 of 35
Application
2013044 / Spigit



members of the set are organized into the height-balanced tree, each member receives a score
depending on the number of times it was voted on and preferred (or rejected). Note that with a height-
balanced tree structure, each of the members of the set can be the subject of a significantly different
number of comparisons (e.g., it is possible for one member in a large set to have been the subject of as
little as a single comparison only). To relate this in real-world terms, in one hypothetical application
where viewers rate their video or movie interests, it is possible for poll-participants to consistently
prefer a movie of particular type or genre (romance), only to have that movie be consistently rejected in
favor of a preferred alternative; in such a context, it is typically desired to score that movie more highly
than one more "distant" from the preferred genre (e.g., a horror movie). Embodiments discussed herein
do exactly that. Clearly, many similar applications and analogies exist outside of the context of content
rating. In one embodiment, therefore, scores are tallied based on the constructed tree in a manner that
tallies both "yes" and "no" votes for each member collected during building of the tree and then that
computes a score based on these votes. Other scoring mechanisms are also possible. Once a score is
computed for each members, the set of all members may be processed (e.g., sorted or rated) based on

the respective scores.

[037] In another implementation, it might be desired to poll how a specific choice rates against
other preexisting alternatives. For example, a height-balanced tree might already have been computed
to represent these preexisting alternatives. The specific "new" choice is compared in a manner that
takes only one branch path of the tree; for example, it is compared first against a preexisting alternative
represented by the root node of the tree. Depending on this comparison, the new choice is then
subsequently compared against one of the "first tier" branch nodes. This process continues, using a
single node in each successive tier for comparison until the new choice is placed as a leaf node in the
tree; the tree is then height-rebalanced as necessary, so as to minimize the number of node
comparisons for the next evaluation. Note that this process is the same process as just described above
for building of a tree, but the difference here is that the tree may have already been previously
constructed (e.g., optionally based on input from other individuals). This is to say, the techniques
described herein can be employed in the building of a tree from scratch as well as to insertion of a new
member of that tree (each member is a "new member" as the tree is being built). Note that although
not discussed extensively for embodiments below, known techniques for manipulating height-balanced

trees may be applied to node-removal situations (i.e., withdrawal of a possible choice or option), and

Page 6 of 35
Application
2013044 / Spigit



these techniques (and associated tree balancing and rescoring of preference data) are nevertheless

considered within the scope of this disclosure.

[038] As this discussion implies, in one embodiment, a height-balanced tree can be built for
multiple individuals, and used to develop scores for each individual for each member of the set; the
scores can then be aggregated across individuals and used to build a group score for each member of
the set (i.e., for each choice). In an alternate embodiment, a height-balanced tree can instead be
computed for a group, e.g., with each individual asked to rate only certain subsets (e.g., exactly 3
pairwise combinations) and the height-balanced tree constructed from many such ratings from the

group in the aggregate. Other possibilities also exist.

[039] With the techniques described herein generally introduced, this disclosure will now proceed
to more detailed discussion of certain embodiments. Generally speaking, FIGS. 1A-1C are used below to
describe general techniques for collecting preference data and scoring members of a set, and related
system, device and software implementations. FIGS. 2A-3Q are used to discuss concepts associated
with use of a height-balanced tree to reduce the number of comparisons needed to evaluate all
members of a set, with FIGS. 3A-3Q being used for discussion of a red-black tree structure. FIG. 4 is used
to discuss options for running a scoring process for a single individual or group of individuals. Finally,
FIGS. 5A and 5B are used to discuss one possible implementation (e.g., screen shots associated with a
network web-poll for a specific football game to air in a specific time slot). Many other examples are

possible.

. Collecting Of Preference Data.

[040] FIG. 1A shows a block diagram of a method 101 for collecting preference data representing
members of a set, and then scoring that data. The members of the set are collectively represented by
numeral 103 and designation {1-n}. These members can be any choices or selections that are to be
compared to one another, for example, alternate political candidates, alternate content in the form of
books, movies or music, alternate possible results for an unreleased corporate forecast, or nearly any

other set where the members are to be voted between or scored or rated relative to one another.

[041] Per the discussion above, it is assumed that it is desired to collect preference data among

these members from at least one individual, to build a tree on an incremental basis, such that all of

Page 7 of 35
Application
2013044 / Spigit



members {1-n} are ultimately represented by the tree. Numeral 105 generally represents this iterative
process. During the building of the tree, expressed preference data is collected and retained such that
each member {1-n} can be assigned a score following the tree building process. The scoring process is
generally represented by numeral 107 in FIG. 1A. The tree is used to limit the number of iterations, such
that the members of the set can have unbiased scores collected, all without needing to exhaustively
compare each member of the set against one another. The retained preference data and, ultimately,
assigned scoring, is used for the voting, scoring, rating or ranking process (these functions will be
collectively referred to herein simply as "scoring"). Once scoring is completed, the scoring can be
applied in an optional, desired manner as indicated by numeral 108 in FIG. 1A. Non-limiting, example

applications will be discussed further below.

[042] During the process of building the tree, if a tree already exists, its structure (i.e., the
placement of previously considered members as nodes) is digitally defined and stored in memory, as
referenced by numeral 109 (non-transitory digital memory is represented by numeral 111). The storage
format can be as simple as an indication of numbers of members already in the tree, an indication of the
type of tree used (e.g., a binary tree), the total number of levels or tiers in the tree, and an address or
other identifier assigned to each member already placed in the tree; if a red-black tree structure is used,
a bit can also be used to indicate for each member whether its node is colored black or red. For
example, if there are 15 members already placed in a binary tree, positioned as a five level tree with
some leaf nodes still empty, addresses from 0-31 could be used to describe which node represents each

respective member already in the tree, with a bit denoting node color.

[043] It was earlier mentioned that the method 101 is used for incremental building of a tree, i.e.,
even if no tree yet exists. To this effect, in one embodiment, all members of the set are received, with
an arbitrary first member of the set being assigned a root node position within the tree. With height-
balancing (as further discussed below), the root node can be shifted in its position as the tree is built,
with ultimate repositioning of this first member to a leaf node (or other node) as may be appropriate
given elicited preference data. In one embodiment, for example, the first available member of the set
can be assigned this root node (e.g., on a first-in, first-out or "FIFO" basis). Note that it is also not
necessary that all members of the set be known a priori. For example, in a prediction market applied to
corporate forecasting, a new possible outcome can be added or suggested at any point in time (e.g., by
an individual being polled as to belief as to the outcome as an event). If a previously un-suggested

outcome is submitted, this new suggestion would become a member of the set and could be placed in a

Page 8 of 35
Application
2013044 / Spigit



pre-existing tree using the processes described below. That is, for example, if a tree had already been
constructed for group and/or a particular individual, a member of the group and/or the individual could
again be polled to determine relative preferences for the new member (the new suggestion) to place it

within the preexisting tree.

[044] Each member of the set not represented by the tree is then compared with the tree on an
incremental basis. In one embodiment, multiple such "new" members can be compared with one or
more "existing" members of the tree, e.g., in a comparison process that elicits data for more than two
members at a time. It is also possible to compare one "new" member at a time with multiple members
of the tree; note that this is equivalent to performing multiple binary comparisons at a time, e.g.,
preference data suggesting that ranks A, B and C as a desired order of preference is equivalent to
pairwise ranking of A>B, B>C, and A>C. In many of the embodiments discussed in detail below,
however, the comparison process is performed on a pairwise basis; that is, the comparison is performed
using one "new" member versus exactly one member already in the tree. This process is represented by
numeral 111 of FIG. 1A. Note that one to many such comparisons are performed to place each "new"
member into the tree using successive nodes for each comparison. For example, if 15 members are
already placed in a binary tree as a 4-level tree, a new member to be placed into the tree is first
compared against a root node, with a branch of the existing tree then being taken for the next iterative
comparison depending on the preference expressed in the first comparison. The following iteration
then compares one of two level one nodes with the new member (depending on the result of the first
comparison). This process continues until the new member is positioned as a leaf node within the tree,

per numeral 115.

[045] Note that as this happens, the tree is expanded in a manner that can make its height
unbalanced. For example, without height balancing, it is possible (e.g., assuming a 30 member set) for
all members to esule-be placed such that the tree only has one branch, with 30 tiers. As referenced
earlier, one benefit of the techniques discussed herein is limiting the number of comparisons, such that
all members of a set do not need to be compared exhaustively to one another. While a 30-member set
represents one simplified, hypothetical example, the number of such comparisons can be quite
computationally expensive for large sets. To this effect, height balancing is used to reorder the tree so
as to reduce the number of comparisons, and essentially force branching within the tree as it is
constructed. This process is represented by numeral 117 in FIG. 1A. The tree is then used to control

future comparisons. Note that it is not necessary that this process be performed continually or at every

Page 9 of 35
Application
2013044 / Spigit



iteration of adding a new member to a tree, e.g., in some embodiments, it can be performed
occasionally or sporadically. Also, the term "height-balanced" should not be understood to require that
all leaf nodes of the tree be distributed "within one level" of one another. Indeed, in the case of a red-
black tree, it is possible to have leaf nodes that are two-or more levels apart according to the rules
associated with red-black trees. That is, a red-black tree typically guarantees that any one branch path
will have no more than twice the number of total nodes relative to any other branch path. Typically, this
means that any placement of a node will require a number of iterations approximately equal to the
binary logarithm of the number of set members, rounded upwards to the nearest integer "j" (j>0),

where the term "approximately" means that the number if iterations will be between j/2 and 2j.

[046] In more detailed embodiments discussed below, as each new member of the set is added
as a leaf node, the tree is tested to determine whether it violates any predetermined criteria for height.
If the tree does violate such pre-established criteria, a subroutine is called to process modify the tree
according to a defined set of rules. As referenced earlier, in one embodiment, the tree is a red-black
tree (i.e., a special case of a binary tree) and red-black tree-building rules are used to recolor or
otherwise modify nodes of the tree. Note once again that while binary trees are reference extensively

herein, other types of trees can be used depending on embodiment.

[047] Each "new" member is compared with existing members already in the tree in a number of
iterations as necessary to traverse the tree, from its existing root node until a leaf node is reached
appropriate for the new member. Subject to any appropriate height-rebalancing, the modified tree is
then stored back in memory 111 as the existing tree for use in considering the next "new" member. This
process is represented by numeral 119 in FIG. 1A. For example, in a hypothetical set of 16 members,
with 7 members already in an existing tree, the 8" member would be iteratively considered and used to
create an 8 member tree, height-rebalanced as appropriate. The modified 8-member tree would be the
existing tree used in considering the 9™ member, and the process repeated until the 16" member was

finally placed in the tree.

[048] As noted earlier, the use of a tree structure helps limited the number of comparisons
needed to score each member, while at the same time, scoring each member of the overall set in an
unbiased manner. To this effect, in one embodiment, each member is scored not only when it is placed
as a "new" member into a tree to create a modified tree, but also when it is subsequently compared as a

member of the tree against a subsequent "new" member. When the tree has been fully built (i.e., all

Page 10 of 35
Application
2013044 / Spigit



members considered), the preference data obtained from all such comparisons is tallied for each
member and used to assign a member-specific score, as represented by numeral 107. The respective

members' scores can then be stored in memory such as denoted by numeral 123 in FIG. 1A.

[049] FIG. 1A uses numeral 121 to identify that scoring 107 can be performed for one or more
persons. That is, as mentioned, in one embodiment, a tree is built for a single individual, and used to
score members of the set. In a second embodiment, this can be done independently for each of several
individuals, with either the preference data or the computed scores for each individual being tallied
across individuals, to identify a group score. For example, considering a simplified hypothetical case
where results from individuals 1 and 2 are aggregated and the data represents set members A and B, if
individual 1 effectively scored members A and B respectively as 0.64 and 0.58, and individual 2
effectively scored members A and B respectively as 0.66 and 0.64, these could be combined to obtain an
aggregate score of 0.65 and 0.61 for set members A and B, representing a group score. The "yes"/"no"
votes (i.e., from each comparison) could instead first be aggregated for individuals 1 and 2 and then
used to compute a score. Other methods of expressing preference data, or of tallying or computing
scores can also be used. In yet a third embodiment, each tree can be built to itself represent a group of
individuals. For example, with a very large set of members and a very large target audience (i.e.,
participants), each participant could be asked to rate either a subset of members, or to provide
preference data for a subset of iterations needed for placement of a single leaf node. The method 101
then builds a tree representing the target audience as a whole. The preference data aggregated for the

group would then be scored. Clearly, many such permutations are possible.

[050] Once scoring has been assigned to each member of the set, the scoring can then be applied
as desired, for example, as part of a prediction market, voting, rating or other application. For example,
in one hypothetical embodiment discussed below in connection with FIGS. 5A and 5B, the method 101
can be applied to poll an audience as to the "group preferences" for college football games to be aired.
In applying the results of voting, a network could publish the vote and/or assign a specific game to a
pertinent time slot in dependence on the voting. Many other applications are possible, e.g., the method
101 can be applied to computer gaming and/or Vegas-style gaming (gambling), prediction market,
polling, corporate forecasting, or nearly any desired application. Numeral 108 denotes the application

of the results of scoring to any such desired application.

Page 11 of 35
Application
2013044 / Spigit



[051] FIG. 1B provides a flowchart 151 that illustrates various principles, options and
implementations associated with scoring members of a set. As denoted by numeral 152, it is desired to
ascertain relative preferences of a target audience including at least one individual amongst members of
a set. Preferences of this target audience are collected and used to construct a height-balanced tree
representing all alternative choices, as indicated by numeral 153. As before, height-balancing is used in
part to limit the number of comparisons needed to place all such choices in the tree, and obtain a
meaningful, relatively unbiased set of relative votes (or preference data). This data is then used to score
the various choices (i.e., the members of the set), per numeral 154. As indicated by function block 155,

the scoring can then be optionally applied to a selected application, as introduced above.
[052] A number of options 156-164 are depicted as associated with the constructing of a tree 153.

[053] First, as indicated by numeral 156, the tree can optionally be constructed and managed
according to red-black tree rules. It is noted that different rules are sometimes associated with red-
black tree manipulation depending upon authority (i.e., publication source), and therefore an exemplary
set of rules will be set forth below be defined herein. A red-black tree as used herein typically colors
nodes either "red" or "black" and specifies that a function of the number of red nodes and black nodes
on each possible root-to-leaf path of the tree must evaluate to a common result; if addition of a node
creates a situation where these rules do not hold true, then the tree is deemed unbalanced in terms of
height, and is height rebalanced. There exist a number of different red-black tree configurations that can
satisfy these criteria. Certain embodiments discussed below will apply more specific red-black tree
manipulation rules associated with a specific red-black tree process. For example, rules used for certain
specific embodiments below herein call for (a) each root node to be colored black, (b) each root-to-leaf
branch path to have a like number of black nodes as any other root-to-leaf branch path, and (c) no use
of two consecutive red nodes. Note that the coloration of each node as "red" or "black" is a fiction, i.e.,
a semantic; nodes can typically be recolored in a manner consistent with the mentioned rules in a
manner that does not affect tree height, and whether a node is colored as black or red does not affect
the fact that the node in question represents a specific choice or member from the set. If a tree is
deemed to be unbalanced (i.e., because these criteria above are not satisfied), certain techniques are
used to rebalance the tree, including rotation of subset branch paths of the tree, moving leaf nodes
between different branches of the tree, and rotating the entire tree itself to establish a new root node.
These techniques will be further discussed. As should be apparent, the specific red-black rules just

introduced provides a guarantee that, all nodes considered, no branch path will be more than twice as

Page 12 of 35
Application
2013044 / Spigit



long as any other branch path (i.e., otherwise the requirement of a like-number of black nodes in each
path and/or the rule against two successive red nodes would be violated). That is to say, as mentioned
above, there is a number of iterations needed to place each new member in the tree is approximately

equal to the binary logarithm of nodes members already in the tree.

[054] The use of red-black tree manipulation rules is not required for all embodiments; therefore,
numeral 157 expresses the option that other forms of tree manipulation can be used, e.g., other forms

of binary trees or non-binary trees.

[055] Per numeral 158, in one embodiment, robust scoring is obtained by tracking both situations
when one set member is preferred relative to a member, as well as when it "loses" (i.e., is not
preferred). This data can be tracked in a number of ways, including for example the number of times a
member was selected relative to the overall number of times a member was compared with another
member. Note that with height-balancing of trees, the overall number of comparisons is not necessarily
inherent to final tree configuration; for example, it is possible in some embodiments to have a node
subject to relatively few comparisons end up as an intermediate or root node because of tree rotation
principles. By tracking not just situations where a set member was preferred, but situations where the a
set member loses a comparison, more robust tracking can be obtained by weighting the losing member
more heavily than to members not subject to frequent comparison. For example, it should be
understood from a practical standpoint that the navigation of a particular branch path in a tree structure
indicates that the selected path is preferred relative to other branches. This provides a mechanism for
weighting unselected members of the set, and therefore for fairly scoring all members of the set without

requiring a head-to-head comparison between each alternate choice.

[056] As indicated by numeral 159, in one embodiment, a tree can optionally be constructed to
represent multiple individuals as a group; alternatively, per numeral 160, in addition to this or instead of
this process, a complete tree (i.e., preference analysis) of all members of the set being considered can
be built for each individual. If the system is being applied to a single individual or entity, the single
computed tree can be used to score members of the set as a function of the specific individual's or
entity's preferences; if a group is being polled, trees (or preference data) can be computed for each
person or small group of persons and then aggregated to build a group rating. Once again, many such

variations exist.

Page 13 of 35
Application
2013044 / Spigit



[057] Per numeral 161, in one embodiment, each member of a set can be scored in one of several
dimensions, with a scoring process applied to each dimension. For example, as pertains to content
recommendation, a song or movie can be simultaneously analyzed along a number of different axes,
each axis representing a different dimension of user preferences (e.g., action, versus adventure, versus
romance, versus intrigue, and so forth). Scoring each member of a set in different dimensions enables
the building of profile information for the specific individual, e.g., for purposes of movie, book, music,

food, dating, or other types of recommendations.

[058] It was earlier mentioned that exemplary applications involve the building of trees on an
incremental basis. However, as reflected by numeral 162, the techniques discussed herein can also be
used to score members when one or more of the members have been removed from a set. For
example, the red-black tree manipulation rules, while sometimes varying from source-to-source, have
straightforward analogies for tree manipulation when a node becomes unavailable. Such manipulation
also involves the coloring of nodes and branch rotation, so as to avoid violating rules associated with
tree structure. In the case that node removal causes a violation of rules for proper tree height, the tree

is rebalanced as necessary.

[059] As indicated by numeral 163, in one embodiment, voting is pairwise; that is, as noted
earlier, a "new" (or "second") member of the set not already represented by the tree is compared to a
single "existing" (or "first") member of the tree. In a first iteration, the first member is selected to be
the member at the root node of the tree. Depending on whether the new member is preferred over the
root node (or not), the right child node of the root node (or the left) is selected for the next iteration for
comparison with the "new" member, and the process is repeated until the new member is placed as a
leaf node in the tree. This is to say, for this option, each iteration compares exactly two members, i.e.,
the member represented as a single node and a single choice not yet represented by the tree. As noted
above, this is not required for all embodiments; in one embodiment, for example, two or more existing
members of a tree form the basis for simultaneous or chained consideration with a new member and in
another embodiment, two or more new members can be used as the basis for comparison with a new

member.

[060] Finally, as indication by numeral 164, in one embodiment, voting or preference data
extraction is passive, i.e., is inferred from other types of conduct, as contrasted with a situation where a

user is expressly asked to select between two choices. For example, in one application, an individual's

Page 14 of 35
Application
2013044 / Spigit



browsing activity (or e.g., music or video viewing activity) is monitored and used to convey preference
data between alternate choices. Many options exist for how subsets of set members can be conveyed
to and expressed to an individual and how preference data can be extracted from the individual's

actions.

[061] As denoted by numeral 165, options also exist in terms of how scoring is performed or
utilized. For example, once a score has been assigned to all members of the set, those members can be
sorted or otherwise manipulated in any desired way. In a voting application (e.g., where trees are
computed for each individual in a group, and respective set members' scores totaled), scores for all

members or any subset thereof can be displayed.

[062] Numerals 166-171 are used to identify some non-limiting applications for the scoring just
referenced. Many of these applications have been listed earlier. For example, as indicated by numeral
166, the scoring process just referenced can be used as a part of a polling process, where it is desired to
determine a preferred member of the set of choices, or how a specific member ranks relative to one or
more other members. Alternatively, per numeral 167, the scoring can be applied to content
recommendation based on profiling of members; for example, the fact that individuals score certain
choices in a specific way can be used to group individuals together to recommend content. Here,
scoring can be used both to identify content that can be recommended as well as to profile individuals
for purposes of identifying a target audience. As suggested by numeral 168, these techniques can also
be applied to prediction markets, where individuals are asked to trade in virtual stocks representing
events uncertain, with preferences and beliefs being inferred from each individual's trade of futures,
and with the individuals being rewarded for trades representing correct predictions. As indicated by
numerals 169 and 170, two exemplary, contemplated applications for the discussed techniques are as a
web service (e.g., as a web based prediction market or polling service) and as software sold for use by
companies seeking to establish their own polling, prediction, rating or recommendation processes. Per

numeral 171, many other examples also exist.

[063] FIG. 1C shows one implementation of techniques discussed herein, that is, to a web-based
service 181. More specifically, the service is rooted in at least one machine 183 such as a web-server
running appropriate software 184 (i.e., an example of instructions stored on non-transitory machine-
readable media). The machine can optionally be a proxy server that defines a network boundary of an

entity 185 with many such machines, e.g., computers 186, each running pertinent software 187. As

Page 15 of 35
Application
2013044 / Spigit



denoted by arrows 189 and 190, the web-based service communicates over a wide area network 191 (a
"WAN," e.g., such as the Internet) with the digital devices of various end users, for example, computers
or laptops 192 and 193, and smart phones, digital touchscreen pads and similar devices, collectively
depicted using numeral 194. Note that relative to the techniques discussed above, these techniques can
be implemented on a distributed basis, for example, with machine 183 generating pairwise comparisons
and machines 186 performing scoring or other functions. In such a context, comparisons can be elicited
via web pages that are formulated by machine 183 and transmitted in HTML or other format to end-user
devices 192, 193 and 194. For example, a web page can be formulated that asks user of smart phone
194 to compare a first choice, representing a member of a set positioned at a root node within a height-
balanced tree, as part of a pairwise comparison. The web page in effect represents image data that,
when displayed on a micro-browser of the smart phone, visually presents two choices and asks the user
of the smart phone to select between them. The user's selection can be input via the client device (e.g.,
smart phone 194) and relayed back to machine 183 (e.g., triggered through the use of JAVA code
downloaded with the web page, the user selection of a link, or in some other manner). For each
iteration, a new web page can be downloaded to the digital device and used to elicit preference data for
each pairwise combination selected for presentation. A distributed environment can also be made to
include the digital devices 192, 193 and 194; for example, in an alternate embodiment, all possible
choices can be initially downloaded with page scripts (e.g., JAVA code) that cause the client digital
device (e.g., smart phone 194) to itself iteratively select subsets of all set members for pairwise
comparison; once the digital device builds a height-balanced tree, associated preference data and/or
scoring can then be reported back to machine 183. Once again, these examples should be viewed as
non-limiting, and many possibilities exist. Note that any results of scoring can also be formatted into a

web page for display on a digital device (e.g., a computer) and be sent to a digital device.

[064] In one application, the web-service 181 is run on a subscription basis for a corporate client.
To this end, a client administrator (represented by numeral 196) remotely accesses machines 183 and
186 through an administrative portal (e.g., which applies security functions, scaling, service interaction
and similar functions). An administrator can establish specific sets of choices that are to be compared,
or specific prediction markets (e.g., quarterly profits for a prediction market being run internal to a
corporation), can manage group membership for individuals permitted to view choices and express
preference data and/or see results. If desired, results can be made visible to the administrator or can

be transmitted to a specific individual, such as a specific user of digital devices 192, 193 or 194. Note

Page 16 of 35
Application
2013044 / Spigit



that a web-service can concurrently service many such clients on a subscription basis, and to this end, a
client-specific portal 198 can be used in concert with a subscription database to perform periodic billing
(e.g., monthly or per-use billing), and also to restrict access to specific sets of data (e.g., specific
prediction markets, rating systems, etc.) to specific groups of individuals (e.g., a specific company's

employees of a certain class).

[065] With general principles associated with preference data collection thus introduced, this

disclosure will turn to a more detailed examination of trees used in this process.

1. Use Of A Height-Balanced Tree.

[066] FIGS. 2A and 2B are used to present one example of a height-balanced tree and its use in
collecting preference data between members of a set. In the particular example represented by FIGS.
2A and 2B, it is assumed that preference data is to be collected relating to an individual's or group's
taste in movies. It should be assumed that there are 10 movies that have already been the subject of
elicited preference data, and that an individual is to be queried as to how the individual likes an 11"
movie relative to these 10 movies already considered. The tree 201 depicted in FIGS. 2A and 2B
represents one iteration of building a tree that can consist of many more movies (e.g., it may be that the
11" movie is the 11* of 30 movies for which relative preference data is being collected). Alternatively, it
could be that the 11" movie represents a newly available choice, and that this choice is being added to a
preexisting set of 10 movies. Either way, a user is queried in a manner where all 11 movies will scored

relative to one another.

[067] With reference to FIG. 2A, the tree 201 is seen to be a binary tree representing already-
received preference data. The tree 201 has four tiers, with a root node (203) at a first tier ("tier 1") and
with other nodes organized into tiers 2, 3 and 4. In the depicted example, movies 4, 5, 2, 9 and 10 are
seen to represent leaf nodes, while movies 3, 7, 6 and 9 represent intermediate nodes. In this example,
a right branch direction from a parent node indicates that all child nodes stemming from the branch
segment are preferred to the parent according to previously-received preference data, while a left
branch indicates that the parent node is preferred to any child node branched from the left of the

parent. For example, according to the tree seen in FIG. 2A, movies 6, 2, 8, 9 and 10 are each depicted as

Page 17 of 35
Application
2013044 / Spigit



preferred to movie 1 whereas movies 1, 6, 2, 8, 9 and 10 are preferred to any of movies 3, 4, 7 and 5,

and so on.

[068] As an example of the process for extracting preference data, an individual is first asked (e.g.,
via the web page process referenced above) to express a preference between the incremental movie
not yet in the tree (i.e., "movie 11") and the root node, "movie 1." This comparison between members
of a subset (movies 1 and 11) yields a first result. In a subsequent comparison, the system proceeds to
nodes 205 or 206 depending on this first result. For example, in an attempt to position "movie 11"
within the depicted tree, if the individual prefers moviell to moviel, the next comparison is between
movie 11 and movie 6 (node 205); alternatively, if movie 1 is preferred, the next comparison is between
movie 11 and movie3 (node 206). If it is assumed that in successive iterations, the polled individual
preferred movie 1 (node 203) to movie 11, movie 11 to movie 3 (node 206), movie 7 (node 211) to
movie 11, and movie 5 (node 209) to movie 11, then movie 11 would be placed as a new leaf node 207
in the tree structure. Note that in the depicted example, this creates a new tier ("tier5") of the tree
structure, immediately below the former leaf node 209. It should be apparent that given the tree
structure, this placement results in an expression of ordered preference of all 11 movies, with precise
ordering for movie 11 even though only four comparisons were in fact performed. Depending on how
the addition of a new node changes the tree structure, it may be desired to rebalance the tree. While
this rebalancing does not necessarily have to be performed with each iteration, in one embodiment,
each time a new leaf node is added, the tree is checked for violation of tree rules (i.e., height balancing

rules) and a subroutine is called to correct any violations as appropriate.

[069] If this 11" movie was the last member of the set to be considered, scoring might then be
performed as appropriate for all members of the set. Note that, as referenced earlier, all members of
the set might be placed in the tree structure and ordered without a like number of comparisons for each
node, e.g., it is possible for some nodes to have experienced many comparisons and some nodes to have
been subject to only a relatively small number of comparisons. To this end, in one embodiment, all
positive and negative votes are tracked for each member of the set during the tree building process. For
the example just given, the addition of movie 11 would contribute 1 "yes" vote for each of movies 1, 5
and 7, one "yes" vote and three "no" votes for movie 11, and one "no" vote for movie 3. These votes
would be accumulated with respective "yes" and "no" votes associated with other additions to the tree

and tallied once the tree has been completed (i.e., to represent all members of the set under

Page 18 of 35
Application
2013044 / Spigit



consideration). In this manner, nodes that are factor frequently in voting are weighted more heavily,

even if ultimately unselected (i.e., not preferred). Other scoring methodologies may also be used.

[070] As should be apparent, the addition of movie 11 as a new leaf node in FIG. 2A creates a 5"
tier of the tree. Thus, as an ensuing choice is compared against this tree, it might be necessary to
perform a disproportionate number of comparisons to add the ensuing choice to the tree (e.g., should a
12" movie be added as a leaf node stemming from node 207, five comparisons would be needed for this
placement). According to one exemplary process, therefore, each time a new leaf node is added to the
tree, the modified tree is assessed and height balanced as appropriate. Typically, the effect of height
rebalancing is to rotate some branches of the tree or the entire tree itself (i.e., thereby changing the

root node to become a different node).

[071] FIG. 2B helps illustrate this process. In FIG. 2B, the tree is once again generally designed
using numeral 201 and the root node is designated 203. However, the tree has now been height-
rebalanced as depicted by rotation icon 208. This is to say, it should be assumed that the structure
depicted in FIG. 2A as modified by the addition of "moviell" as new node 207 has been tested and
determined to violate predetermined criteria for height balance. Accordingly, the structure seen in FIG.
2A is therefore further modified to effectively flatten and redistribute tree height for use in subsequent
comparisons. Note that while all 11 movies are still represented in the tree structure, this process
results in the presentation of the tree as having at most four tiers (i.e., tiers 1-4 as depicted in FIG. 2B).
Note that the tree has been modified to change its representation without effectively changing the
information conveyed by the tree, to wit, that "moviell" is preferred to movies 3 and 4, but is less
preferred than movies 1-2 and 5-10. That is, only the tree representation of the relative preference
information has changed, not the preference information itself. The rebalancing of the tree helps
minimize the additional preference data needed to reconcile further additions to the tree with the

existing tree structure.

[072] Note that the rotation of all or part of a tree helps redistribute height even where red-black

rules are not used for height balancing.

[073] FIGS. 3A-3Q will be used to describe the incremental building of a tree 301 according to red-
black tree rules. It is emphasized that the use of red-black trees represent only one exemplary
embodiment, and that other trees and/or other tree manipulation principles are used in other

embodiments.

Page 19 of 35
Application
2013044 / Spigit



[074] As mentioned earlier, the specific red-black methodology used herein features several rules
used to maintain height-balance as a binary tree is constructed. As each new leaf node is added to the
binary tree, the tree is tested to ensure compliance with the rules. For the embodiment of FIGS. 3A-Q, a

tree is determined to be out of conformance if any of the following is true:

(a) there exists a different number of black nodes in one branch path from root-to-leaf

than in any other root-to-leaf branch path; or

(b) the tree features two consecutive red nodes in sequence in any branch path from

root-to-leaf; or
(c) the root node is red.

If any of these rules are violated, a tree balancing procedure (e.g., subroutine) is called to change the
graphic representation of the tree and to restore balance. Note that when building the tree, a new leaf
node is always colored red by default, and there are no more than two child nodes to any parent. If
following this addition, the aforementioned rules are violated, the correction process performs
recoloration, followed by node rotation (and change in child node dependence, as appropriate).
Compliance with the aforementioned rules is then reassessed, and processing repeated as necessary
until compliance is acheieved. The following principles are generally employed: First, black nodes are
moved as high in the tree as possible during recoloration, while preserving the requirements that there
must be an equal number of black nodes in each branch sequence and that there cannot be two
consecutive red nodes in sequence. Second, if addition of a leaf node results in two red nodes in
sequence, these nodes are pushed as far up the tree as possible during recoloration while maintaining
the principles that (1) there be an equal number of black nodes in each root-to-leaf branch alternative
and (2) the root node remains black. Once adjacent red nodes have been moved up as far as possible,
these red nodes are rotated as far as possible in a clockwise direction within the affected branch before
performing any rotation through a parent node. It is noted that because rotation reallocates nodes
across affected branches, this invariably will permit rebalance of the tree in a manner that satisfies the
rules mentioned above, following recoloration. Finally, a red node may always be recolored as a black
node as long as doing so does not violate the other listed rules. These principles will be exemplified in

the series of steps discussed below, designed to illustrate red-black tree manipulation.

Page 20 of 35
Application
2013044 / Spigit



[075] For purposes of discussion, it should be assumed that there are nine members of a set, and
that it is desired to obtain preference data for all nine members of the set. It should be assumed that
none of these members have yet been evaluated and that all members are to be evaluated by a single
individual. As seen in FIG. 3A, in a first incremental step of building a tree, a first member is selected
and placed in the tree 301 as a first node 302. Being that this node is the only node of the tree, it is the

root node and it is colored black (as represented by a hatched-fill).

[076] In FIG. 3B, a second member of the set is to be evaluated against the first member
represented as the root node 302. A subset consisting of these members of the set is presented to the
individual for purposes of pairwise comparison. It is assumed that the individual indicates a preference
for the new member over the member corresponding to the root node 302; a node representing the
new member is accordingly placed in the tree to the right of node 302 as a new "red" leaf node 303.
This structure does not violate any of the exemplary red-black tree rules, and hence the tree is not

rebalanced.

[077] In FIG. 3C, a third member of the set is evaluated against the existing tree. In a first iteration
of this evaluation, it is found that the new member is preferred to the first member (represented as
black node 302); in a second iteration, it is found that the second member (represented by red node
303) is preferred to this third member. Accordingly, the third member is placed to the left of red node
303 and is likewise colored as a red node. This coloration offends the mentioned red-black tree rules

because two red nodes are not allowed to exist in sequence.

[078] Accordingly, the tree 301 is first processed to the push the two successive red nodes as far
up the tree as possible. As the first rule is that the root node 302 must always be black, it is impossible
to move the two successive red nodes further toward the root node. Next, the red nodes (and any child
nodes) are rotated clockwise as far as possible. This is depicted in FIG. 3D as referenced by the rotation
graphic 305, showing clockwise rotation of the second and third nodes, 303 and 304. Note that node
303 now depends from node 304, instead of vice-versa (as seen in FIG. 3C). However, despite this
transformation, the tree 301 still represents the same preference data, that is, node 303 > node 304 >
node 302, in order of preference. Because this structure still violates the red-black rules selected for
this embodiment, the tree is next processed to rotate the two red nodes through the parent node 302 in
a counterclockwise direction. This rotation is depicted in FIG. 3E, once again using numeral 305. Note

that this operation changes the root node from node 302 to node 304, and that following rotation, the

Page 21 of 35
Application
2013044 / Spigit



tree 301 has a different number of black nodes in each path from the new root node 304. However
since a red node may always be recolored as black as long as this does not violate one of the rules (i.e.,
the requirement of equal black nodes in each root-to-leaf path), this problem can be resolved by
recoloring node 302 as red, as seen in FIG. 3F. Note that relative to FIG. 3C, the same data is now
represented as a balanced, 2-tier binary tree instead of the 3-tier tree of FIG. 3C, and that in both cases,
the representations convey exactly the same information, i.e., node 303 > node 304 > node 302 in terms
of relative preference. As another member of the set is subsequently added to this tree on an

incremental basis, positioning of that new member as a leaf node will require at most two iterations.

[079] In FIG. 3G, it is assumed that a new fourth member of the set is to be added to the tree 301,
and that this new member is preferred to member corresponding to node 304 but not the member
corresponding to node 303. This fourth member is added as a new "red" node 306, and the modified
tree is again tested to ascertain compliance with the mentioned red-black tree rules. As two red nodes
are now in sequence in the right branch path, and as this offends one of the rules for red-black trees
used for this specific embodiment, a height-rebalancing process is one again invoked. In this instance,
however, the issue can be resolved by recoloring the nodes 302 and 304 as black, as now depicted in
FIG. 3H. That is, a red node can always be recolored as black as long as doing so does not violate the
requirement that an equal number of black nodes be represented in each path. Following this
recoloration, the tree 301 once again satisfies the criteria associated with a balanced tree, and the

process then proceeds to consideration of the next unconsidered of the set.

[080] In FIG. 31, the next member has been added through a number of comparison iterations, i.e.,
to determine that the individual prefers a fifth member of the set to the member represented at node
304, but not to the members represented at nodes 303 or 306. Once again, this results in two red nodes
in a row, requiring rebalancing of the tree. Accordingly, the node representing the new member 307
and node 306 are first rotated clockwise, such that node 306 depends from node 307; then, these nodes
and their parent node (node 303) are rotated, in this case in the clockwise direction, such that node 306
is the new parent. Because node 303 is black and this black coloration can be moved higher in the tree
without offending other rules, node 306 is then recolored as black and node 303 is recolored as red.
The final result is seen in FIG. 3J, accompanied by the rotation icon 305 to show the effect on the
presentation of nodes 307, 306 and 303, relative to FIG. 3I. Note that once again, while the tree now

satisfies the expressed red-black rules, the same preference data is still equivalently represented by FIG.

Page 22 of 35
Application
2013044 / Spigit



3J, e.g., node 303 > node 306 > node 307 in relative preference. Because there are an equal number of

black nodes in each path and the other rules are satisfied, no further recoloration need be performed.

[081] In FIG. 3K, the next member of the set has been compared to the tree and added as a new
red leaf node 308. The tree is then once again tested for height-balance, and it is determined that two
red nodes are again presented in sequence. However, in this case, a height-balancing subroutine can re-
establish conformance with red-black rules simply by recoloring nodes 307 and 303 as black and node
303 as red. A tree revised in this manner is then stored for use in eliciting preference data for other

members of the set.

[082] In FIG. 3L, the next member of the set is compared with a sequence of nodes describing a
single branch path; the new tree member is assumed to be preferred to the members represented by
nodes 304, 306 and 303, and is consequently added as a new red node as indicated by numeral 309.
During testing for compliance with red-black rules, it is determined that the modified tree does not
violate any red-black tree criteria. Accordingly, a tree-balancing subroutine is not invoked, and the

modified tree and collected preference data (votes) are stored.

[083] FIG. 3M represents the next incremental process, which results in the hypothetical
placement of another member as node 310. Once again, this does not violate any of the mentioned

rules for tree height, and a balancing process is not required.

[084] FIG. 3N represents the addition of a ninth member of the set, as node 311, depending from
node 308. Note that this once again violates the mentioned-red-black rules, as there are now two red
nodes in sequence. According, rebalancing is required and results in the operations depicted in FIGS.
30, 3P and 3Q. First, the two red nodes are moves as high as possible in the tree structure; this results
in coloration of nodes 308 and 310 as black nodes and the coloration of node 307 as a red node, as
depicted in FIG. 30. However, the presence of two successive red nodes 306 and 307 still violates the
red-black tree rules. Note that these red nodes cannot be moved higher in the tree without violating
the requirement that the root node be colored black. As these red nodes can be rotated to the right,
both they and all of their dependent nodes are rotated clockwise, as once again referenced by rotation
graphic 305. Note that there cannot be more than two child nodes for any parent according to the rules
presented above. In this case, the member corresponding to node 310 was preferred to the member
corresponding to node 307 but not to the member corresponding to node 306. As simple clockwise

rotation of nodes 307 and 306 would place 3 dependencies from node 307, node 310 is instead moved

Page 23 of 35
Application
2013044 / Spigit



to depend from node 306, i.e., still representing the relative preference of node 310 to node 307 but not
to node 306. The resultant structure is depicted in FIG. 3P. However, this structure still represents a
tree that has two successive red nodes that cannot be addressed through recoloration. As a
consequence, the two red nodes are then rotated through their parent node (node 304) which changes
the root node of the tree to become node 307. With this change, recoloration can be applied to once
again bring the tree into conformance with the mentioned red-black rules, i.e., node 307 is recolored
black and node 304 is recolored red. The resultant tree, seen in FIG. 3Q, is thus once again height-
balanced and its representation is stored in memory for use in consideration of any additional set

members.

[085] It is once again noted that the specific red-black rules just discussed represent only one
specific implementation of a height-balanced tree. As should be apparent, "height-balancing" in this
context does not require that each possible branch have an equal height, but merely that some process
is employed to keep one branch path from getting "too long" relative to other branch paths. For
example, the specific red-black rules just discussed will ensure that no branch path is more than twice as
long (in terms of total traversed nodes) than any other. Other forms of height balancing may be

employed, whether applied to binary trees or otherwise.

[086] With a detailed example of height-balancing thus presented, some examples of scoring and

presentation will now be introduced.

V. Scoring Of Results.

[087] As noted earlier, the use of a height-balanced tree helps ensure that every member of a set
under consideration can be ordered relative to every other member of the overall set using a reduced
number of preference comparisons. Once the tree-building process is complete (i.e., and preference
data has been obtained for all members of the overall set), the members of the set are scored according
to the obtained preference data, as appropriate for any voting, recommendation, polling, rating, or
other application. FIG. 4 is used to represent this in the form of a block diagram, generally designated
numeral 401; numeral 403 represents the use of a height-balanced tree, as referenced, while numeral
405 represents the scoring process. The various scores can be stored in digital memory (not depicted in

FIG. 4). With each member scored, the members can be sorted according to score, e.g., highest-to-

Page 24 of 35
Application
2013044 / Spigit



lowest. This is represented by numeral 407. A result can then be optionally displayed representing any
number of members of the set, e.g., at least one member (e.g., "the winner") or multiple members as a
comparative result. For example, in one embodiment, software simply displays these results to the
individual being polled or to an administrator. In a network-based application (e.g., in connection with a
network service), a specific display page can be formatted (e.g., as an HTML document) and transmitted

to a remote computer for display, as depicted by dashed-line (optional) function block 409.

[088] In one embodiment, both positive preference data (e.g., "yes" votes) and negative
preference data (e.g., "no" votes) are respectively tallied from all comparisons in building a tree are
tracked for each member. This optional scoring step is represented by numeral 411 in FIG. 4. Other
options also exist for aggregating preference data, but it is believed this operation provides a simple yet
robust mechanism that provides a basis for fairly weighting each of the members of a set. In a specific
embodiment, a Wilson's score can then be calculated based on these aggregated yes votes and no votes
for each member of the overall set. One example of a Wilson's scoring methodology is provided by the
equation below, where "Y" represents the number of "yes" votes tallied for a given member of the set,

and "N" represents the number of "no" votes tallied for the given member of the set.

<Y+1.9208—<1.96><\/0.9605+((Y><N)/(Y+N)))>

Score =
(Y+N+3.8416)

As should be apparent, many other possible mathematical measures are possible for computing scores
based on collected preference data. In the context of the embodiment of FIG. 4, a numerical measure is
computed for each member of the set and then, as alluded to by function blocks 407 and 408, the
scored members can then be sorted and applied to the desired application. For example, in a polling
application, the top score-recipient or a set of the n-most top score recipients can be displayed.
Alternatively, scores can be converted to a probability estimate, with one or more of these estimates

displayed to indicate likelihood of outcome.

[089] FIG. 4 also references group versus individual calculation options, introduced earlier. For

example, per numeral 415, a height-balanced, binary tree can be used for each individual (e.g., of a

group) to elicit preference data (and associated scores) using a reduced number of computation

iterations. Alternatively, a binary tree can be computed based on iterations directed to respective,

different subsets of individuals within a group. As an example, if a hypothetical set consists of 20

members and if it is desired to score preferences of a group of 30 individuals, different combinations of
Page 25 of 35

Application
2013044 / Spigit



individuals (e.g., 15 individuals at a time) could be asked to place incremental members of the set within
a binary tree, using the principles introduced earlier — to heighten confidence in accuracy of the result,
the specific permutation of 15 individuals could be varied for each new member comparison (and/or for
each iteration of comparing the new member with different nodes), with the individuals selected in a
random manner. Naturally, these examples are non-limiting and are used simply to introduce the wide
range of implementation variations. As referenced by dashed-line block 419, if multiple trees are used
for respective individuals (or groups of individuals), these trees can be scored and then combined or the

underlying preference data can first be combined and then scored.

V. A Hypothetical Practical Application.

[090] FIGS. 5A and 5B are used to provide one hypothetical application example, with both polling
and results expressed in the form of web pages. More specifically, FIGS. 5A and 5B represent an
example where a sports television network wishes to poll popular opinion as to which game to air on a
hypothetical date of October 19. It is noted that there are well over 100 NCAA FBS (division 1) college
football teams in the United States, with about 13 games involving top-25 teams set for play on October
19. In this example, it is assumed that a television network wishes to take an Internet poll to determine

which game or games to air on October 19.

[091] Applying the principles introduced earlier, the television network (or a third party service
provider) could invite a predetermined group of individuals (such as visitors to a website) to take a poll.
As part of the poll, a first one of the 13 top-25 matchups would be assigned as a root node, and each
individual would then be asked to pairwise iteratively compare subsets of the 13 games, beginning with
a comparison between a second one of the top-25 teams and a node from a tree formed by matchups
already processed. FIG. 5A shows one rudimentary example of a webpage 501 that solicits the
preference of an individual being polled; depending on the entry checked by the individual, the webpage
501 would then be refreshed to request an ensuing comparison depending on the choice selected in the
prior round. The poll would end once all 13 matches had been considered according to a height-
balanced binary tree. While in this example there would be 78 permutations of pairwise comparisons
that could be performed to obtain complete preference data between games, through the use of a
height-balanced tree to control the presentation of pairwise comparisons, preference data across the

entire field of games could be elicited using a much smaller number of comparisons. By eliciting

Page 26 of 35
Application
2013044 / Spigit



preferences among 3 candidate matches at a time, or by asking different combinations of individuals to
indicate preference for each subset of the available matches, the polling process can be streamlined
further. Once sufficient preference data was elicited for all available matches, the poll would end with
scoring of available matches. FIG. 5B shows a sample results page 551 that shows hypothetical scoring
once polling is completed (e.g., for a specific group of individuals, e.g., poll participants to-date). This
page 551 represents scoring of all 13 matches, e.g., using a Wilson's score formula as introduced earlier,
but with only the top five results displayed. Completing this hypothetical, a television network could

monitor results and use the results to select one or more matchups to air in a specific time slot.

[092] Note again that this hypothetical example represents merely one possible application. That
is, nearly any set of candidate choices can be processed using the techniques described above, with
nearly any desired usage made of data once members are scored according to preference data. For
example, the mentioned techniques can be applied to prediction markets, polling, voting, gaming,

gambling, and many other types of applications.

[093] In the description above, some or all of the functions described above can also be embodied
as instructions stored on non-transitory machine-readable media, including software code or firmware
that, when executed, cause a machine (e.g. a microprocessor or device having a microprocessor) to
perform functions described by these instructions. Such media can typically any form of machine-
readable media capable of storing a signal, whether magnetic, optical, electronic, etc., with common
examples being dynamic random access memory (DRAM), a computer readable disk, server memory, a
flash card, a compact disk, network memory and so forth. Also, any such instructions can be
alternatively implemented as hardware logic, or a combination of hardware and software logic,

depending on implementation.

[094] The foregoing description and in the accompanying drawings, specific terminology and
drawing symbols have been set forth to provide a thorough understanding of the disclosed
embodiments. In some instances, the terminology and symbols may imply specific details that are not
required to practice those embodiments. The terms “exemplary” and "embodiment" are used to

express an example, not a preference or requirement.

[095] Various modifications and changes may be made to the embodiments presented herein
without departing from the broader spirit and scope of the disclosure. For example, features or aspects

of any of the embodiments may be applied, at least where practicable, in combination with any other of

Page 27 of 35
Application
2013044 / Spigit



the embodiments or in place of counterpart features or aspects thereof. Accordingly, the specification

and drawings are to be regarded in an illustrative rather than a restrictive sense.

Page 28 of 35
Application
2013044 / Spigit



Claims

We claim the following.

1. (New) A method of scoring members of a set relative to one another, where the members of the set
include first members for which relative preference data has been received from at least one person,

the first members organized according to a tree structure, the method comprising:

iteratively selecting subsets comprised of at least one of the first members and a second
member of the set, and eliciting relative preference information from an individual
between members of each respective subset, where the at least one of the first
members for each subset is selected according to a path in the tree structure, beginning
with a root node and continuing through the tree structure until a leaf node is reached

according to the elicited preference information from any previous iterations;

placing the second member into the tree structure according to the elicited relative preference
information from each iteration, whereupon the second member becomes one of the

first members;

height-balancing the tree structure if height-unbalanced;

repeating the iteratively selecting, placing and height-balancing for a new second member; and

assigning a score to each member of the tree structure, to thereby score the members of the set

relative to one another.

2. (New) The method of claim 1, where:

the at least one person includes exactly one person; and

the individual is the exactly one person.

3. (New) The method of claim 1, where:

Page 29 of 35
Application
2013044 / Spigit



the at least one person comprises individuals, including the individual;

the iteratively selecting, placing, height-balancing and repeating are performed for each of the
individuals in the group, to develop respective height-balanced tree structures each

representing all members of the set; and

the assigning of scores is performed to represent aggregate relative preference information for

each member of the set from all individuals.

4. (New) The method of claim 3, where the assigning of scores includes assighing scores for each
member of the set independently for each individual, and combining the respective individual's scores

for each member of the set.

5. (New) The method of claim 1, implemented on one or more network servers, where the iteratively
selecting and eliciting includes generating a browser-displayable page for presentation to the individual
via a digital device associated with the individual, where the browser-displayable page is to visually
present one of the subsets to the individual and to responsively receive input from the individual of the

preference data corresponding to the visually-presented one of the subsets.

6. (New) The method of claim 1, where the tree structure comprises a red-black tree structure, and
where height-balancing the tree structure if height unbalanced includes recoloring at least one node of

the red-black tree structure.

7. (New) The method of claim 1, where height-balancing the tree structure if height-unbalanced includes

rotating the tree structure and, in so doing, changing the root node of the tree structure.

8. (New) The method of claim 1, where each of the subsets consists exactly of a pair of members,

including the second member and exactly one of the first members, such that the relative preference

Page 30 of 35
Application
2013044 / Spigit



data elicited from the individual represents a pairwise comparison between members of the set, and
such that the second member is scored relative to all members of the set using a number of pairwise
comparisons that is no more than approximately the binary logarithm of a total number of first

members in the set.

9. (New) An apparatus comprising instructions stored on non-transitory machine-readable media, the
instructions adapted when executed to cause at least one machine to score members of a set relative to
one another, where the members of the set include first members for which relative preference data
has been received from at least one person, the first members organized according to a tree structure,

the instructions adapted when executed to cause the at least one machine to:

iteratively select subsets comprised of at least one of the first members and a second member
of the set, and elicit relative preference information from an individual between the
members of each respective subset, where the at least one of the first members for
each subset is selected according to a path in the tree structure, beginning with a root
node and continuing through the tree structure until a leaf node is reached according to

the elicited preference information from any previous iterations;

place the second member into the tree structure according to the elicited relative preference
information from each iteration, whereupon the second member becomes one of the

first members;
height-balance the tree structure if height-unbalanced;
repeat the iterative selection, placement and height balancing for a new second member; and

assign a score to each member of the tree structure, to thereby score the members of the set

relative to one another.

10. (New) The apparatus of claim 9, where:

the at least one person comprises individuals, including the individual;

Page 31 of 35
Application
2013044 / Spigit



the instructions are adapted to perform the iterative selection, the placement, the height-
balancing and the repetition for each of the individuals, to develop respective height-

balanced tree structures each representing all members of the set; and

the instructions are adapted to cause the machine to perform assignment of scores representing

all of the individuals.

11. (New) The apparatus of claim 10, where the instructions are further adapted when executed to
cause the at least one machine to assign scores for each member independently for each of the

individuals, and to combine scores from the individuals respective to each member.

12. (New) The apparatus of claim 9, where the instructions when executed are adapted to cause the at
least one machine to in association with the iterative selection and the eliciting of relative preference
data, generate a browser-displayable page for presentation to the individual via a computer associated
with the individual, where the browser-displayable page is to visually present one of the subsets and
responsively receive input from the individual of the preference data corresponding to the visually-

presented one of the subsets.

13. (New) The apparatus of claim 9, where the tree structure comprises a red-black tree structure, and
where the instructions are adapted to, when executed, cause the at least one machine to recolor at

least one node of the red-black tree structure.

14. (New) The apparatus of claim 9, where the instructions are adapted to, when executed, cause the at
least one machine to perform as part of the height-balancing of the tree structure if height-unbalanced,

rotating of the tree structure and, in so doing, changing of the root node of the tree structure.

Page 32 of 35
Application
2013044 / Spigit



15. (New) An apparatus to score members of a set relative to one another, where the members of the
set include first members for which relative preference data has been received from at least one person,

the first members organized according to a tree structure, the apparatus comprising:

a computer adapted to iteratively select subsets each comprised of at least one of the first
members and a second member of the set, and to elicit relative preference information
from an individual amongst members of the respective subset, where the at least one of
the first members for each subset is selected according to a path in the tree structure,
beginning with a root node and continuing through the tree structure until a leaf node is

reached according to the elicited preference information from any previous iterations;

a computer adapted to place the second member into the tree structure according to the
elicited relative preference information from each iteration, whereupon the second

member becomes one of the first members;
a computer adapted to height-balance the tree structure if height-unbalanced;

a computer adapted to repeat the iterative selection, placement and height balancing for a new

second member; and

a computer adapted to assign a score to each member of the tree structure to thereby score the

members of the set relative to one another.

16. (New) The apparatus of claim 15, further comprising at least one computer adapted to transmit to a
remote digital device a browser-displayable page that visually presents the scores for at least two

members of the set.

17. (New) The apparatus of claim 16, further comprising a computer to maintain for-fee subscription
information, where the at least one computer adapted to transmit is to transmit the browser-
displayable page to the remote digital device only upon verification of a valid subscription associated

with a user of the remote digital device.

Page 33 of 35
Application
2013044 / Spigit



18. (New) An apparatus to score members of a set relative to one another, the apparatus comprising:

means for retrieving a tree structure representing existing members of the set, and iteratively
comparing an individual's preference of a new member relative to the existing members
of the set, wherein iterative comparing is performed between the new member and a
subset of the existing members identified according branch of the tree structure formed

according to the individual's expressed preferences in each previous iteration;

means for adding the new member to the tree structure to create a modified tree structure, and
for height-balancing the modified tree structure if such addition causes the modified

tree structure to become height-unbalanced; and

means for using the modified tree in iteratively comparing another new member relative to

members represented by the modified tree structure;

where a number of the existing members used in comparison with each new member is no
more than approximately the binary logarithm of a total number of the existing

members represented by the respective tree.

19. (New) The apparatus of claim 18, where each tree is a red-black tree, and where the means for

adding the new member includes means for recoloring the red-black tree.

20. (New) The apparatus of claim 18, embodied in part in software running on a network-ready

machine.

Page 34 of 35
Application
2013044 / Spigit



Abstract

A software voting or prediction system iteratively solicits participant preferences between members of a
set, with a binary tree built used to minimize require the number of iterations required. As each
member of the set is considered, it is pairwise-compared with select members represented by nodes
already in the binary tree, with iterations beginning at a root node of the tree and continuing to a leaf
node. The newly considered member is placed as a new leaf node, and the tree is height-rebalanced as
appropriate. Red-black tree coloring and tree rotation rules are optionally used for this purpose. Yes/no
preference tallies are kept for each member of the set throughout the tree-building process and are
ultimately used for scoring. Height-rebalancing of the tree helps minimize the number of iterations

needed to precisely score each member of the set relative to its alternatives.

Page 35 of 35
Application
2013044 / Spigit



