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Abstract: This paper describes an approach that can facilitate composition of course materials by machine 
assistance over the web using semantic web technology.  A Semantic Topic Graph (STG) that encodes the 
conceptual knowledge metadata space is used as the front-end to the course resources. STG provides ontologies and 
properties of the concepts space and course materials are then connected with respect to their relation to this 
concept space. A course composer system is demonstrated which can intelligently compose various course materials 
based on pedagogical consideration. Some interesting comparisons of human guided machine-composed courses 
with real human composed courses in use in US graduate programs are shown.  
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1 Introduction 
Although many courseware materials are now available 
online, but it seems their reuse has been surprisingly 
limited. What might be the dilemma? The reason seems 
to be that it is not easy to pedagogically redesign them. 
These do not come with the knowledge context. The 
lofty goal of creating sharable course material may 
never be successful if the knowledge map or the context 
behind cannot be shared as well. Interestingly, the 
recent advances in semantic network now provide a 
means to do that.  In this research we show an approach 
where courseware materials are organized around a 
machine computable ontology. We then show a course 
design system which then can help human designer in 
designing courses with high level pedagogical guidance. 
There are recent attempts of online ontological 
courseware browsing libraries [1, 2, 3]. These keep 
annotated metadata as another layer to the real contents 
[1, 2, 3]. These first generation systems are suitable for 
human browsing but paradoxically are not easily 
machine computable. Even though they are concept 
(topic) based- the range of concepts is often very rich 
and concepts are not ranked in their knowledge domain 
[4,5]. We base our approach on a modified semantic net 
with a computable form of expressiveness based on 
topic dependency and equivalence. We then show its 
successful use in machine assisted design of courseware 
and share some composition work done by this system. 

2 STG General Definition 
Semantic Topic Graph is a directed graph G = (V, E), 
where V is the set of concept nodes, E is the set of edges 
between concept nodes. Each concept node represents a 

subject specific concept (such as “scheduling”, “thread”, 
“round robin schedule”, etc.) and acts an index to 
various course materials.  

STG also has a weight structure. For each concept node, 
node weight is used to represent the relative importance 
of each concept; for each edge, edge weight is specified 
to represent the relative importance of the sub-concepts 
inside a particular concept.  The sum of the prerequisite 
edge weights for a particular concept is always 1. Also 
they have associated pedagogical variables such as 
“teaching time”, “depth” etc. 

3 Algorithmic Pedagogical Composition 
The pedagogical process surrounding the design of a 
course, courseware, or conventional presentations 
undertaken by a teacher or presenter perhaps can be 
viewed as a three-step design process.  

The first step is concept space selection. This is a global 
selection process. It can be poised as an optimization 
problem where each concept has some pedagogical 
value and also some formative cost.  For example, if it 
is a presentation or course then perhaps there is a time 
limit or limit on the number of classes within which 
certain set of concepts have to be covered. If the 
composition goal is to produce a book or class note then 
there will be some form of page limit. The concepts 
have relative merits with respect to the pedagogical 
objective of the course. Thus we construct the problem 
such that each design sessions would like to maximize 
the pedagogical value with respect to a given formative 
constraint of the presentation. Two issues however, 
must be noted. First, the concepts have relative merit 
but not intrinsic merit. The values of the concepts are 
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also dynamic in the sense that their importance is 
particular composition is relative to other concepts 
taught or not taught in the composition.  The concepts to 
be included also must satisfy somewhat complex 
dependency constraints. Thus the problem cannot be 
poised as a classical knapsack that picks from an 
unordered set of objects with fixed value. Below we 
show a modified Knapsack to accommodate the ordered 
and dynamic valued objects. 

Inclination: theoretical, functional, applied.

Coverage: depth vs. breadth

Instrumentation: by examples (case studies, 
applications), by problem solving, by 
deductive conversation, by explanation

Sequence: single threaded (top 
down, bottom up or mixed, iterative), 
multithreaded

Intensity: relaxed (slow, 
fast). intensive, adaptive

Learner Preferences

Background 
knowledge

Formative constraints

Classroom type: 
classroom, 
seminar hall, 
laboratory 

Format: lecture, workshop, 
seminar, course.

Product: lecture note, 
text book, test, solution.

Bounds & durations: session 
time, number of sessions, 
page limit.

Teaching Styles

disabilityinterestGoal

 
Fig. 1 Influential factors in course composition design 

The second process that is also involved is the design of 
courseware is pedagogical styling. Though, it is a 
complex and iterative proves but, we try to formulate 
this as a local selection problem to keep it 
computationally tractable. Each concept can be taught in 
various ways. Given the global constraints, here for 
each concept node, based on the style preference 
particular content is selected based on their style value. 
For example an applied course would like to include 
more application examples, than proof of properties, on 
a given topic. A theoretical focused course will perform 
the trade-off in the opposite way.    

There is yet another process involved in courseware 
design. This is sequencing. Most learning activity 
occurs by a systematic presentation of the topics to be 
covered. The presentation is sequenced into linear 
thread. Complex teaching encounters allow for multiple 
teaching threads to continue in parallel. The design 
requires some topic area, topic bias, and quality goals. 
Figure-1 shows the influence factors in course 
composition design.  

4 Composition Evaluation 

In this section we now define a set of graph theoretic 
criterion against which we can understand some 
properties of the composition and perhaps even compare 

it against human composition in some pedagogical 
sense.  

Given an input graph G(V, E), we can get a sub graph 
under measurement, Gc(Vc, Ec), a reference sub graph 
Gh(Vh, Eh) and the intersect graph G∩= Gc ∩ Gh. Note: 
Gh could be obtained by other ways.  We will evaluate 
course composition with structure similarity and 
structure deviation.  

Structure similarity and Deviation 

Structure Similarity and Structure Deviation show how 
much similarity the edges of the two graphs Gc and Gh 
have in common.   

Structure similarity ξs is defined as the quotient 
between the weighted degree of connection of the nodes 
in G∩ and the weighted degree of connection of the 
common nodes in the original graphs Gc and Gh.   
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Where, Ξ(G∩) is the total weight of the edges in the 
graph G∩ and Ξ(G∩,Gk) is the total weight of the edges 
in Gk with at least one end vertex is in G∩.  
 
Structure Deviation ρs is similar to Node Deviation ρn. 
It is defined as the weighted number of edges that is not 
in the intersect graph G∩.  ρs = 1- ξs. 

There are two kinds of deviations: Inclusion Deviation 
ρs(i) and Exclusion Deviation ρs(e). Inclusion Deviation 
ρs(i) is the weighted number of edges that are in graph 
Gc, not in graph Gh; Exclusion Deviation ρs(e) is the 
weighted number of edges that are in graph Gh, not in 
graph Gc 

( ) ( )
( ) ( )
( ) ( )

( ) ( )hc

h
s

hc

c
s

sss

GG
G

e

GG
G

i

ei

,G,G
G,G

)(

,G,G
G,G

)(

)()(

∩∩

∩∩

∩∩

∩∩

Ξ+Ξ
Ξ−Ξ

=

Ξ+Ξ
Ξ−Ξ

=

+=

ρ

ρ

ρρρ  (2) 

 

5 Performance Evaluation & Results 

5.1 Graph Comparison 
We get two kinds of graphs here: reference graphs and 
computer-selected graph.  
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Reference graphs 

The reference graphs are extracted from our STG 
manually with the information downloaded from 
internet. Two reference graphs will be used here. One is 
collected from Kent State University (KSU)and the 
other from The University of Tennessee (UT).  Both of 
these two universities cover the same area “Advanced 
Algorithms” topic and use the same book Introduction 
to Algorithms, Cormen, H.T., Leiserson, C.E, Rivest, 
R.L.  Figure 2 illustrates the table of contents 
respectively. Note: The real node name is represented 
here only by symbol here in this figure and below. 

C15.3 C15.4 C15.5C15.2 E15.1

C17.1 C17.4C17.3C17.2

C33.1 C33.2 C33.3 C33.4

C35.1 C35.2 C35.3 C35.5

C16.3 C16.2 C16.1 E16.1

C34.1 C34.2 C34.3 C34.4 C34.5

E18.1P18.1 E18.2 E18.3 E18.5

E19.1 E19.2 E19.3 E19.4 E19.5

C26.1 C26.2 C26.3 C26.4 C26.5

C15 C16

C17

E19C35

E18

C33 C34

C26

A

C1 C3.1

C15.5C15.2 C15.4 C16.3C16.2C16.1

C24.2 C24.3 C26.1

C26.2

C3

C16

C26C21

A

C21.2C21.1

C4 C4.1 C4.2 C4.3 C28 C28.2C28.1 C30 

C15.1 C15.3C15 C25.1 C25.2

C23 C23.1 C23.2

C35.4 C29 C29.1 C29.2 C29.4 C29.5

C34.1 C34.2 C34.3 C34.4 C34.5C34 C35.1 C35.2 C35.3C35

C33.1 C33.2 C33.3 C34.4C33

C30.2C30.1

C21.4C21.3

C26.3

C35.5 C29.3 

UT CS581
N=63

KSU  CS6/76101
N=51

 
Fig. 2 Table of contents for Advanced Algorithm from KSU at the 
top part and UT at the bottom part. Total number of nodes is 51 and 
63 respectively 

 

Computer selected graph 

Computer selected graph is extracted from STG with 
our algorithm. After the client goes through whole 
process and inputs all parameters, the computer will 
automate to provide a graph for client. Figure 3 shows 
an example with 50 nodes and time constraints equal to 
460 minute at the top part and there is thread 
linearization result at the bottom part.  

Now let us see how a computer generated curriculum 
(CC) for the same topic of “Advanced Algorithm” 
compares to these two human generated (reference) 
curriculums. With two reference graphs (KSU and UT), 
we compare the organization of the course with respect 
to the course composer (CC) generated composition 
with time constraint= 460 minutes, and with unbiased 
seed topic set of {+’Advanced_Algorithm’}. CC1 is 
shown in figure 3. Table 1 summarizes the comparison 
result structure similarity between them respectively. 
As can be seen the structure similarity between the KSU 
and UT is only 66%. The structure similarity between 
the KSU and CC1 is 76% and UT and CC1 is 81%. From 
the comparison result between KSU and UT, we can get 
a general range of selection by human in real world. 

Different people could have different opinion on the 
same topic in the same area.  ξs = 0.66. The result just 
only shows the difference between different university 
and haves only subjective meaning. 
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C26 C26.1 C26.2 C26.3 C26.4
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C34.1 C34.2 C34.3 C34.4 C34.5

C35.1 C35.2

C15 C16

C17

C34C33

C21

C24.1 C25.3

C35

A

CC1   
N=50 Time=460

A

C25.3

C25.1 

C24.1 C24.2 

C24
C25

C25.2 

C25.2

C35.3 C35.4

C33

 
Fig. 3 CC1 with node number 50 and time constraints=460minutes 

5.2 Specialized/customized Composition 
For particular users, because of their prior knowledge 
and previous courses covered, some topics can be 
excluded/Included encroachment from other courses. 
the weight of the edge to the topic node can be adjusted 
accordingly, so the course contents can be selected 
efficiently to meet their needs.  With the same tool 
above, we can indeed analyze the customization 
performed in both of the universities. KSU has a strong 
program in Parallel Processing, and there are several 
subsequent courses that require students to know about 
parallel algorithms. Other factors are: graph theory has 
been covered in several other courses and the research 
area of the teacher is NP. So a customization with initial 
seed topic = {+’Advanced_Algorithm’, 
+’Parallel_Algorithms’, + ‘Exact Solutions to NP-
Complete Problems’, -graph theory, -‘disjoint sets’}. ‘+’ 
means inclusion, ‘-‘ means exclusion. This returns the 
curriculum CC2 in figure 4. The comparison is shown 
now in Table 2. CC2 is similarity to KSU. The structure 
similarity is 96%. 

Now we want to see what happens in UT syllabus? We 
enter seed topic = {+’Advanced_Algorithm’,  +’linear 
programming’, +’FFT’, -‘Parallel_Algorithms’, -
‘Amotized analysis’}.  This returns the curriculum CC3 
in figure 5.  The comparison results are summarized in 
Table 3. Now CC3 is more like UT. The structure 
similarity between UT and CC3 is 91%. Inside this 
table, the comparison between CC2 and CC3 is included. 
 
From the result above, we can also tell which edge is 
most effective. The node to which the edge is connected 
is a key node. For the topic Advanced of algorithm, Key 
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nodes are Dynamic programming; Greedy Algorithms; 
NP-Completeness; Approximation Algorithms; 
Computational Geometry 
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Fig. 4 CC2 with node number 48 
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Fig. 5 CC3 with node number 66 

 

Table 1 Structural Similarity Analysis 
 KS UT KS CC1 UT CC1 
Total Node 36 40 40 39 46 44 
Common 29 34 39 
ρs(e) 0.19 0.14 0.11 
ρs(i) 0.15 0.10 0.08 
ξs 0.66 0.76 0.81 

 
Table 2 Structural Similarity Analysis 

 KS CC2 UT CC2 
Total  46 47 43 40 
Common 44 31 
ρs(e) 0.01 0.15 
ρs(i) 0.03 0.12 
ξs 0.96 0.73 

 
Table 3 Structural Similarity Analysis 

 KS CC3 UT CC3 CC2 CC3 
Total  36 42 63 68 48 42 
Common 30 59 33 
ρs(e) 0.16 0.03 0.16 
ρs(i) 0.10 0.06 0.09 
ξs 0.74 0.91 0.75 

Inside these tables, Total means total number of edges 
in each graph. Common stands for common parts 
between two graphs.  

6 Conclusions and future works 
In this paper we have shown how based on knowledge 
ontology course can be composed. Previously we have 
shown how problem complexity can be assessed [6]. 
However, the actual design of courseware is very 
difficult and is still beyond the realm of any automatic 
system. Human considerations are indispensable in the 
design of learning activity. The suggested tools can only 
provide some objective assessment about the product of 
design. In future, computer aided pedagogical design is 
conceivable which can amplify the design capability of 
human designers in the sense CAD tools have helped 
human engineers. It is interesting to note that currently 
there is plenty of courseware available for digital 
sharing. Unfortunately, their reuse is very low. The 
reason is probably the lack of good design help at 
pedagogical level. Given the inherent autonomous 
nature of learning activity, a potential future work is to 
develop a peer-to-peer model of courseware repository 
integrated with such design tools. 
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