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Abstract: This paper describes an approach that can facilitate composition of course materials by machine
assistance over the web using semantic web technology. A Semantic Topic Graph (STG) that encodes the
conceptual knowledge metadata space is used as the front-end to the course resources. STG provides ontologies and
properties of the concepts space and course materials are then connected with respect to their relation to this
concept space. A course composer system is demonstrated which can intelligently compose various course materials
based on pedagogical consideration. Some interesting comparisons of human guided machine-composed courses
with real human composed courses in use in US graduate programs are shown.
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1 Introduction

Although many courseware materials are now available
online, but it seems their reuse has been surprisingly
limited. What might be the dilemma? The reason seems
to be that it is not easy to pedagogically redesign them.
These do not come with the knowledge context. The
lofty goal of creating sharable course material may
never be successful if the knowledge map or the context
behind cannot be shared as well. Interestingly, the
recent advances in semantic network now provide a
means to do that. In this research we show an approach
where courseware materials are organized around a
machine computable ontology. We then show a course
design system which then can help human designer in
designing courses with high level pedagogical guidance.
There are recent attempts of online ontological
courseware browsing libraries [1, 2, 3]. These keep
annotated metadata as another layer to the real contents
[1, 2, 3]. These first generation systems are suitable for
human browsing but paradoxically are not easily
machine computable. Even though they are concept
(topic) based- the range of concepts is often very rich
and concepts are not ranked in their knowledge domain
[4,5]. We base our approach on a modified semantic net
with a computable form of expressiveness based on
topic dependency and equivalence. We then show its
successful use in machine assisted design of courseware
and share some composition work done by this system.

2 STG General Definition

Semantic Topic Graph is a directed graph G = (V, E),
where V is the set of concept nodes, E is the set of edges
between concept nodes. Each concept node represents a
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subject specific concept (such as “scheduling”, “thread”,
“round robin schedule”, etc.) and acts an index to
various course materials.

STG also has a weight structure. For each concept node,
node weight is used to represent the relative importance
of each concept; for each edge, edge weight is specified
to represent the relative importance of the sub-concepts
inside a particular concept. The sum of the prerequisite
edge weights for a particular concept is always 1. Also
they have associated pedagogical variables such as
“teaching time”, “depth” etc.

3 Algorithmic Pedagogical Composition

The pedagogical process surrounding the design of a
course, courseware, or conventional presentations
undertaken by a teacher or presenter perhaps can be
viewed as a three-step design process.

The first step is concept space selection. This is a global
selection process. It can be poised as an optimization
problem where each concept has some pedagogical
value and also some formative cost. For example, if it
is a presentation or course then perhaps there is a time
limit or limit on the number of classes within which
certain set of concepts have to be covered. If the
composition goal is to produce a book or class note then
there will be some form of page limit. The concepts
have relative merits with respect to the pedagogical
objective of the course. Thus we construct the problem
such that each design sessions would like to maximize
the pedagogical value with respect to a given formative
constraint of the presentation. Two issues however,
must be noted. First, the concepts have relative merit
but not intrinsic merit. The values of the concepts are
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also dynamic in the sense that their importance is
particular composition is relative to other concepts
taught or not taught in the composition. The concepts to
be included also must satisfy somewhat complex
dependency constraints. Thus the problem cannot be
poised as a classical knapsack that picks from an
unordered set of objects with fixed value. Below we
show a modified Knapsack to accommodate the ordered
and dynamic valued objects.

Teaching Styles

/ Inclination: theoretical, finctional, applied.

Formmtive constraints

Formt: lecture, workshop,

/ Coverage: depth vs. breadth

Co

Instrumentation: by examples (case studies,

applications), by problemsolving, by
/ deductive conversation, by explanation

Bounds & durations: session
time, nurmber of sessions,
page limit.
Sequence: single threaded (top
down, bottomup or mixed, iterative),
multithreaded

Product: lecture note,
text book, test, solution.

Intensity: relaxed (slow,

Classroomtype: ity: e »
classroom, fast). intersive, adaptive
seminar hall,
laboratory
/ / / /
Goal Background | - interest disability
knowledge
Leamer Preferences

Fig. 1 Influential factors in course composition design

The second process that is also involved is the design of
courseware is pedagogical styling. Though, it is a
complex and iterative proves but, we try to formulate
this as a local selection problem to keep it
computationally tractable. Each concept can be taught in
various ways. Given the global constraints, here for
each concept node, based on the style preference
particular content is selected based on their style value.
For example an applied course would like to include
more application examples, than proof of properties, on
a given topic. A theoretical focused course will perform
the trade-off in the opposite way.

There is yet another process involved in courseware
design. This is sequencing. Most learning activity
occurs by a systematic presentation of the topics to be
covered. The presentation is sequenced into linear
thread. Complex teaching encounters allow for multiple
teaching threads to continue in parallel. The design
requires some topic area, topic bias, and quality goals.
Figure-1 shows the influence factors in course
composition design.

4 Composition Evaluation

In this section we now define a set of graph theoretic
criterion against which we can understand some
properties of the composition and perhaps even compare

it against human composition in some pedagogical
sense.

Given an input graph G(V, E), we can get a sub graph
under measurement, G(V,, E.), a reference sub graph
Gp(Vy, Ey) and the intersect graph G~= G, N Gy. Note:
Gy, could be obtained by other ways. We will evaluate
course composition with structure similarity and
structure deviation.

Structure similarity and Deviation

Structure Similarity and Structure Deviation show how
much similarity the edges of the two graphs G, and Gy,
have in common.

Structure similarity & is defined as the quotient
between the weighted degree of connection of the nodes
in G, and the weighted degree of connection of the
common nodes in the original graphs G. and G,
22(G )
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Where, Z(G.) is the total weight of the edges in the
graph G, and E(G~ Gy) is the total weight of the edges
in Gy with at least one end vertex is in G~.

Structure Deviation p; is similar to Node Deviation p,.
1t is defined as the weighted number of edges that is not
in the intersect graph GN. p, = 1- &,

There are two kinds of deviations: Inclusion Deviation
ps(i) and Exclusion Deviation p(e). Inclusion Deviation
ps(i) is the weighted number of edges that are in graph
G,, not in graph Gy; Exclusion Deviation p(e) is the
weighted number of edges that are in graph Gy, not in
graph G,

po=p. )+ p,(e) @)
. 2(6,..6,)-2(.)

P =2G 6.)126..6,)

p,(e) = £(G..6,)-2(G )
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5 Performance Evaluation & Results

5.1 Graph Comparison
We get two kinds of graphs here: reference graphs and
computer-selected graph.
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Reference graphs

The reference graphs are extracted from our STG
manually with the information downloaded from
internet. Two reference graphs will be used here. One is
collected from Kent State University (KSU)and the
other from The University of Tennessee (UT). Both of
these two universities cover the same area “Advanced
Algorithms” topic and use the same book Introduction
to Algorithms, Cormen, H.T., Leiserson, C.E, Rivest,
R.L. Figure 2 illustrates the table of contents
respectively. Note: The real node name is represented
here only by symbol here in this figure and below.
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Fig. 2 Table of contents for Advanced Algorithm from KSU at the
top part and UT at the bottom part. Total number of nodes is 51 and
63 respectively

Computer selected graph

Computer selected graph is extracted from STG with
our algorithm. After the client goes through whole
process and inputs all parameters, the computer will
automate to provide a graph for client. Figure 3 shows
an example with 50 nodes and time constraints equal to
460 minute at the top part and there is thread
linearization result at the bottom part.

Now let us see how a computer generated curriculum
(CC) for the same topic of “Advanced Algorithm”
compares to these two human generated (reference)
curriculums. With two reference graphs (KSU and UT),
we compare the organization of the course with respect
to the course composer (CC) generated composition
with time constraint= 460 minutes, and with unbiased
seed topic set of {+’Advanced Algorithm’}. CC; is
shown in figure 3. Table 1 summarizes the comparison
result structure similarity between them respectively.
As can be seen the structure similarity between the KSU
and UT is only 66%. The structure similarity between
the KSU and CC; i1s 76% and UT and CC, is 81%. From
the comparison result between KSU and UT, we can get
a general range of selection by human in real world.

Different people could have different opinion on the
same topic in the same area. & = 0.66. The result just
only shows the difference between different university
and haves only subjective meaning.

.

Fig. 3 CC, with node number 50 and time constraints=460minutes

5.2 Specialized/customized Composition
For particular users, because of their prior knowledge
and previous courses covered, some topics can be
excluded/Included encroachment from other courses.
the weight of the edge to the topic node can be adjusted
accordingly, so the course contents can be selected
efficiently to meet their needs. With the same tool
above, we can indeed analyze the customization
performed in both of the universities. KSU has a strong
program in Parallel Processing, and there are several
subsequent courses that require students to know about
parallel algorithms. Other factors are: graph theory has
been covered in several other courses and the research
area of the teacher is NP. So a customization with initial
seed topic = {+’Advanced Algorithm’,
+’Parallel Algorithms’, + ‘Exact Solutions to NP-
Complete Problems’, -graph theory, -‘disjoint sets’}. ‘+’
means inclusion, ‘-¢ means exclusion. This returns the
curriculum CC, in figure 4. The comparison is shown
now in Table 2. CC, is similarity to KSU. The structure
similarity is 96%.

Now we want to see what happens in UT syllabus? We
enter seed topic = {+’Advanced Algorithm’, +’linear
programming’, +’FFT’, -‘Parallel Algorithms’, -
‘Amotized analysis’}. This returns the curriculum CC;
in figure 5. The comparison results are summarized in
Table 3. Now CC; is more like UT. The structure
similarity between UT and CCs; is 91%. Inside this
table, the comparison between CC, and CC; is included.

From the result above, we can also tell which edge is
most effective. The node to which the edge is connected
is a key node. For the topic Advanced of algorithm, Key
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nodes are Dynamic programming; Greedy Algorithms;
Algorithms;

NP-Completeness, Approximation
Computational Geometry
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Fig. 4 CC, with node number 48
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Fig. 5 CC; with node number 66

Table 1 Structural Similarity Analysis

Table 2 Structural Similarity Analysis

Table 3 Structural Similarity Analysis

KS®&CC; UT®CCs CC,&CCs
Total 3642 6368 4842
Common 30 59 33
pile) 0.16 0.03 0.16
p5(i) 0.10 0.06 0.09
& 0.74 0.91 0.75

Inside these tables, Total means total number of edges
in each graph. Common stands for common parts
between two graphs.

6 Conclusions and future works

In this paper we have shown how based on knowledge
ontology course can be composed. Previously we have
shown how problem complexity can be assessed [6].
However, the actual design of courseware is very
difficult and is still beyond the realm of any automatic
system. Human considerations are indispensable in the
design of learning activity. The suggested tools can only
provide some objective assessment about the product of
design. In future, computer aided pedagogical design is
conceivable which can amplify the design capability of
human designers in the sense CAD tools have helped
human engineers. It is interesting to note that currently
there is plenty of courseware available for digital
sharing. Unfortunately, their reuse is very low. The
reason is probably the lack of good design help at
pedagogical level. Given the inherent autonomous
nature of learning activity, a potential future work is to
develop a peer-to-peer model of courseware repository
integrated with such design tools.
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