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Abstract— In this paper we present the results from a class room
setting based experiment to test the validity of the bottom up
technique employed in teaching concepts in the domain of
computer programming like branching, looping, nested looping,
procedures, recursion, etc. Programming knowledge concepts are
generally taught in an order of increasing complexity of
comprehension, like branching before looping before recursion
and so on. The null hypothesis is that with the knowledge of
simpler concepts, students can then learn and apply increasingly
complex concepts. We test this technique by asking students to
review example LOGO programs and their corresponding
correct outputs and then perform increasingly complex
programming tasks which will require them to apply the
acquired knowledge from the examples. It is expected that after
reviewing complex programs the students too will be able to
perform increasingly complex tasks thus demonstrating concept
knowledge. The student performance on the tasks is measured by
comparing the student generated program and the expert
generated correct solution in terms of a parameter called
cognitive complexity (CC). It is seen from the preliminary results
that although students consistently learn and apply simpler
concepts, they do not learn and apply complex concepts to solve
tasks as often.
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l. INTRODUCTION

Jean Piaget [14] proposed the theory of constructivism as
an exhaustive explanation for learning at different stages of a
human life. The theory gives an explanation for cognitive
development of concepts in human concept learning where in
at every stage of learning, the cognitive concept map a human
is assumed to possess is modified as new concepts is learned
and prior concepts are discarded. According to the theory, a
learner acquires new knowledge through the processes of
assimilation and accommodation. Based on the previously
acquired knowledge, a learner decides to put the new incoming
concepts into context following one of the processes. New
concepts at higher levels of abstractions are formed as
knowledge is internalized from information. In assimilation the
human cognitive concept map is not restructured, but in
accommodation the map needs to be restructured to fit in the
new concepts. Thus, according to the constructivist view of
teaching students should learn higher level programming
concepts from lower level concepts, which justifies the bottom
up technique of teaching programming concepts. The general
method of teaching programming concepts domain is a bottom

up approach where the educators starts from the simplest
concept and builds the knowledge by incrementally introducing
more complex concepts. This teaching technique mimics the
constructivist view of teaching.

An experiment is conducted in which the students are first
presented with LOGO programs and the corresponding correct
output for every program. Students are allowed to study the
programs and form concepts i.e. attach semantics to the
structural constructs of the program in their minds.

to circ :radius

repeat 360 [fd 2*3.14*:radius/360 rt 1]
end

circ 10

Figure 1. Example LOGO program to draw a circle using “repeat” statement

The students then take an untimed test where in they have
to answer “constructive questions”. Constructive questions are
simply question such that they require the knowledge of
prerequisite concepts to be able to be answered correctly and
they progressively are based off the ability of answer the
previously posed questions correctly. The programs generated
by the students and the ideal solution programs for the
problems are then evaluated for their cognitive complexity and
compared. Cognitive complexity (CC) is chosen as a
measurable parameter for two reasons namely, CC is
fundamentally inherent to any software code or any piece of
information for that matter and also because there has already
been extensive research on the computation of CC using
software metrics for simple software systems. Concept learning
involves lot of other activities which go hand in hand with
learning like comprehension, storing, encoding, decoding and
retrieval of concept knowledge [3].

Parker and Becker [11] conduct a very similar experiment
though they do not base their study on a conceptual knowledge
representation. In another work, Soloway [4] details how
construction of mechanism and explanations occurs in minds in
the form of detailed plans as a result of programming
assignments. Although the work lacks empirical measures it
gives interesting explanations of how programmers selectively
chunk information in an incremental manner to form
explanations and mechanism. It too lacks a conceptual view of
knowledge; however it still reiterates the existence of
constructivism in learning programming concepts.



Il.  GRAPHICAL REPRESENTATION OF CONCEPT KNOWLEDGE

Cognitive concept maps are representations of concept
knowledge in the human mind. We give a simple graphical
approach for representation of cognitive maps based on
constructivist theory of learning.

The concept map is a directed cyclic graph in which a node
represents a concept and the edges represent the relationship
between the concepts. The relationships can have various
semantics associated with them however all of them are
abstracted to a higher level of relation called has-prerequisite
relationship. The children nodes of a concept node represent
the prerequisites for that concept node. It means that the
knowledge required to comprehend a concept is given by the
immediate children of the concept node thus emulating the
importance of prior knowledge in comprehension of a node. In
essence, to comprehend a particular node it is essential to
comprehend all its children nodes first, and to comprehend the
children nodes, we need to comprehend their children nodes
and so on. For example in programming concepts concept map
shown in Figure 2, to comprehend the concept of “looping”,
student first needs to comprehend all its prerequisite concepts
i.e. while and repeat. Given all the requisite knowledge
required to comprehend a particular concept the students
should voluntarily engage in an active discovery of knowledge
and construction of concepts at a higher level of abstraction.
The objective of any teaching technique is to impart this
graphical representation to a student. A student is said to have
“learned” the programming concept knowledge domain when a
student has acquired, for example, a concept map like Figure 1.

Figure 2. Example concept map for programming concepts

I1l.  EXPERIMENT METHODOLOGY AND SETUP

Students are given LOGO programs along with their correct
outputs. LOGO is an educational programming language
developed by a group led by Seymour Papert at MIT in the
1950’s and is based on the principle of constructivism. The
most popular component of LOGO is the turtle graphics
component which allows the users to draw simple or very
complex shapes by commanding the turtle to move in a desired
way. Writing programs to first draw simplistic shapes and then
progressively modify the program to draw more and more
complex shapes exhibits typical constructivist bottom up
concept learning behavior. Another reason that LOGO was
chosen was that it is extremely simple to learn in a very short

span of time. In fact no syntactical knowledge or knowledge of
any programming paradigm is required to play with turtle
graphics. Any person with reasonable knowledge of very
simple concepts likes programs, loops, branches etc. can look
at a LOGO program and should be able to figure out the
working of a program.

There have been a number of studies on the effectiveness of
LOGO in education. It is debated whether programming is
mostly a syntactical learning issue and should not be
considered more than that, or if programming had a lot of
implicit advantages in developing the cognitive thinking
abilities of students [8, 12]. Papert conducted an extensive
research project on the effectiveness of LOGO, named as the
Brookline LOGO project. However it turned out that LOGO
was not a factor in development of cognitive skills in students.
Kurland et al. [8] in a study examined if LOGO aided in the
development of general thinking skills other than programming
and found the observations to the negative. R. Pea, Kurland et
al. [7] also studied the cognitive effects of learning computer
programming and mental models of children while learning
recursive LOGO programming. All of these studies were
extensive both in period of time and observations, which
harmed the original intent of observing concept learning and
skills acquisition.

In this study we attempt to measure the how effective is the
technique of teaching concepts in a constructivist theory
fashion by the use of LOGO programs. Students are first asked
to fill out a pre-test questionnaire consisting of questions about
their programming experience, programming knowledge,
number of projects undertaken, etc. This information is later
used to calculate a parameter of the student behavior as
governed by his/her experience, prior knowledge etc. Then the
students are asked a set of questions, first based on simple
programming concepts like sequential statements, branching
(if-then-else) and looping (repeat). Progressively the questions
get complex, in the sense that they progressively are based on
concepts at a higher level of abstraction in the ‘programming
concepts’ concept map like in Figure 2. Gradually the questions
are based on procedures, nested looping and recursion. The
intuition behind this is that after having seen a few example
programs demonstrating the concepts in practice, the students
assimilate the knowledge of these basic concepts and then
constructively use these concepts to internalize newer concepts
at a higher level of abstraction. Parker and Becker [10] list
some interesting properties which any constructivist question
set should have and we believe our set of questions does follow
these properties.

IV. COGNITIVE COMPLEXITY

The cognitive structures in the mind are not directly visible
so we need a theory to use the observable behavior as one of
the parameters to evaluate a student’s performance [15]. Here
the observable behaviors are the programs produced by the
student which are a direct result of the student’s acquired
concept knowledge. We parameterize the code produced by the
student in an attempt to give solution to the question, by the
cognitive complexity of the code. The cognitive complexity of
software is defined as “those characteristics of the software
which affect the level of resources used by a human/system to



perform a given task on it” [2]. In more general terms, Basili
[1980] defined cognitive complexity of software as the
resources expended by a system, human or other, while
interacting with a piece of software to perform a given task [1].
The resources referred to in these definitions are the concepts
which the student has acquired from learning the previous
concepts. Since the student obviously can comprehend a
program written by him/her, it follows that the cognitive
complexity measure of the final product program is a good
indicator of his/her level of comprehension and consequently
learning.

A. Cognitive processes in program comprehension

Chunking and tracing [17] are the two main processes
which are generally believed to occur during the
comprehension of programs. Chunking is the process in which
a student recognizes a group of statements (not necessarily in
order) and extracts information from these statements to form
abstraction about the software. The process of navigating
through the code to look for chunks is called as tracing. The
processes of chunking and tracing are essential elements of the
physical comprehension process and therefore directly
contribute to the cognitive complexity. Therefore, we device an
approach to calculate the total cognitive complexity based on
the chunking complexity and tracing complexity from
previously published approaches.

There are generally two views of comprehension by
chunking. According to Sheiderman and Mayer learner utilizes
both semantic knowledge and syntactic knowledge [17]. By
chunking syntactic knowledge common concepts are grouped
to a single concept at a higher level of abstraction forming a
multi-leveled representation of the program. Semantic
knowledge is nothing but conceptual representation of program
structure like simple loops to more complex structures like
whole algorithms. This semantic knowledge is relatively
independent of the syntactical knowledge of programming
languages. This view of comprehension fits very well with our
conceptual representation and constructivist learning theory.
Another view is that of Ehrlich and Soloway [5], which says
that learner’s form control flow plans and variable plans by
chunking pieces of code based upon appropriate roles. We
believe this again reverts back to the semantics of conceptual
representation wherein roles represent concepts.

B. Factors affecting chunking

Cant etal. [2] list a number of factors affecting the
complexity of chunks. We classify these factors according to
Rauterberg’s generic definition of cognitive complexity of a
system in terms of behavioral complexity (BC), system
complexity (SC) and task complexity (TC). Cognitive
complexity (CC) is then defined as CC=SC+TC-BC. The
factors affecting chunk complexity classified accordingly are,

e Task Complexity
o F1- Chunk size

o F2 - Type of Basic Control Structure [19] in
which the chunk is enclosed.

e  System Complexity

o F3 - Recognizability e.g. programming
paradigm, rules of discourse, cohesion.
o F4 - Visual Structure layout (grouping of
chunks etc.).
e Behavior Complexity

o F5 - Familiarity (experience, speed of recall
etc.).

Thus according to Rauterberg’s CC formula [15],
CC =F1+F2+F3+F4-F5 D)

C. Calculation of Factors

The first factor F1, chunk size is calculated as the
standardized chunk size in lines of code. The programs used for
the purpose of this experiment were very small and therefore
we decided to use a normalizing factor of 100.

standardized chunk size = @
100

2

TABLE I. WCBCS WEIGHTS
Category BCS Weight WCBCS
Sequence Sequence 1

Branch If-then-else 2
Case 3

Iteration For-do 3
Repeat-until 3

While-do 3

Embedded | Function call 2
Recursion 3

Nesting 3

Concurrency Parallel 4
Interrupt 4

The calculation of F2 is a bit complex and equally important
factor in the calculation of cognitive complexity. The
complexity of the code enclosing the chunk is important
because the structure will represent some acquired concept in
the cognitive map after student has internalized the information
obtained from the chunk. Therefore we calculate the
information complexity (IC) of chunk enclosing code in this
factor. Wang has identified 7 types of structures called as the
Basic Control Structures (BCS) which can enclose the chunk
and can therefore contribute to this factor [18, 19]. These
BCS’s are weighted according to their intuitive complexity in
comprehension and empirical estimation. As it turns out,



concepts at a higher level of abstraction in the programming
tasks concept map have a higher weight value (WCBCS). The
weights for types of BCS are given in Table 1.

In our experiments, the maximum weight of the BCS we used
was 3. To calculate the information complexity (IC) we use
Khuswaha and Misra’s [9, 10] definition given by,

_ Informationcontent of each LOC «WCBCS
total LOC (3)

IC

Information content in each LOC is calculated as the
summation of all the operators, operands and identifiers in that
line of code.

Info.(LOC), = operators, +operands, + identifier s, (4)

For our LOGO environment, we have defined as the LOGO
reserved words or commands as the operators, any variables,
words or lists used as operands and any other words like
procedure names as identifiers examples as shown in Table 2.

TABLE II. ELEMENTS OF INFORMATION IN LOC’S.
Operators Operands Identifiers
FD, BK, LT, RT, circle, square
REPEAT, TO, :count, :size, airal s qrs e
END, HOME, :sidea, :sideb etc. P 'etg P
CS, PU, PD, etc. ’

The formula to measure WCBCS is given by amplify the effect
of weights of the BCS’s.

WCBCS = BCS? + BCS? +...+ BCS? )

Other complexity calculation parameters which are often used
are Halstead’s software metrics, McCabe’s cyclomatic
complexity, Klemola’s KLCID complexity metric, etc.

From the behavior data we collected, all except 1 student
from the test set had 0 knowledge of LOGO environment.
Therefore we decided to assign a value of 1 for system
complexity combined for factors 3 and 4. The value of
behavior complexity factor F5 is calculated from the data
obtained from the pre-test questionnaire. A total of 19 students
took this test, 2 of whom were girls, 5 were non computer
science majors. The students were either labeled as experts (>3
years of programming experience) or novices (<3 years). The
students were asked to rate themselves in their knowledge of
programming languages, experience in programming,
experience in LOGO, number of projects etc. The values
collected were then standardized for the group, i.e. the value
for each student was divided by the highest value in that

category and the behavior complexity was then calculated by
simply averaging all these values.

Once all the values for all the factors were calculated the
total cognitive complexity was calculated using the eq.1. These
values were calculated for each solution for each student.

D. Example IC calculation for a simple LOGO program

to spiral :size

if :size > 50 [stop]
fd :size rt 15
spiral :size * 1.02

end

spiral 10

Figure 3. Example LOGO program to draw a spiral

Operators=7 (in 6 LOC)

Operands=4 (:size in 4 LOC)

Identifiers=3 (spiral in 3 LOC)

Total = 14

Total LOC =6

BCS=(sequential, if, recursion, procedure call)
WCBCS=[1%+22+3%+2%]=18

IC =14/6*18 =42

V. OBSERVATIONS AND RESULTS

Once we calculated the cognitive complexities for each
solution for all the students we compare them to the cognitive
complexity of the correct solution for each question. The
correct program solution is generated by an expert in the field
and does not contain erroneous or extraneous statements or any
elements which can artificially inflate or deflate the values of
cognitive complexity. We compare the behavior of the graphs
for each of the 19 students, plotted from the CC values
generated from the solutions for the 9 questions in the test,
against the expert’s graphs generated from the CC values
generated from the ideal solution. Therefore the desired graph
would be one which follows the ideal graph (or referred to as
expert’s graph). A lower CC for a particular solution implies,
the students’ solution did not contain BCS’s with the weights
as much as the expert’s solution contained. This in turn implies
that the student wasn’t able to reproduce in practice the BCS
with greater weights i.e. ones which are at a higher level of
abstraction. This could have 2 possible explanations, the first
one is that student did not understand the basic concepts itself
on which to base the higher concepts on, or students did not
understand higher level concepts in spite of comprehending
lower level concepts thus demonstrating an absence of
constructivist concept learning. If the former is true, then that
observation can be validated by checking the corresponding



CC values for those lower level solutions. The plots for the
students against the expert’s graph can be seen in Figure 4.

Student CC vs. Expert CC
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Figure 4. Student CC vs. Expert CC

It can be seen from the graph that most of the student CC
graphs follow the expert CC graphs in behavior although not in
values. It can also be seen that till question 5 most of the
student CC graphs are equal to or above that of expert CC
graph implying the comprehension of lower level concepts
asked in the questions at the beginning of the test. However for
question 6 and further the behavior of the student CC graphs
becomes erratic. Some graphs follow the experts graph while
some don’t, but the consistency of behavior is not maintained.
Particularly for solution to question 6, the graphs are especially
erratic. This maybe because question 6 required the student to
demonstrate the knowledge of nested looping. Although quite a
few students were not able to answer this question correctly
there were a few students who demonstrated through their
solutions the ability to internalize higher level concepts like
nested looping from simple looping. Figure 5 shows the
behavior of average and median of student CC graphs against
the expert CC graph to get a more general view of the
behaviors.
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Figure 5. Student Average, Median CC vs. Expert CC

It can be seen from this graph that both the average and
median CC graphs for students follow the same behavior in
between themselves and the expert CC map too, except for
question 6 which in fact was the nested looping question. In
Figure 6 we plot the difference between the student CC values
and expert CC values to highlight the students with CC graph
behavior closest to the experts. In this way we can identify
students who have near ideal graphs and compare their scores
for the individual question to validate the results if necessary.
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Figure 6. Difference analysis

It is seen that for question 1-3 there is almost little or no
difference in student and expert CC graph behavior for most
students. However after these questions, when higher level
concepts start being questioned, the difference between the CC
starts beginning to appear. Except for some outliers the
difference remains uniform till question 6. After this however,
the erratic behavior of the student graphs start. It will be very
interesting to investigate the exact nature of causes for this
happening.

In Figure 8 graph we first determine the correlation
between the CC values for students and the CC values of the
expert and then plot against the behavior complexity of
students. Not surprisingly the two graphs follow very closely in
behavior indicating the validity of this method of measuring
comprehension abilities.
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Figure 7. Correlation versus Behavior complexity

VI. CONCLUSION AND FUTURE WORK

In this paper we present a novel methodology to evaluate
the bottom up technique for teaching programming concepts.
The technique is based on theory of constructivism from
educational psychology. Concepts are taught in an order of
increasing complexity so that complex concepts can be learnt
with the prior knowledge of simpler concepts. We test this
technique of teaching in a classroom scenario where students
are asked to answer specially designed questions and the
solutions produced are compared with ideal solutions to make
operational conclusions. On the basis of the parameter values
we reason about the possible concepts which the student might
have comprehended in the process of producing the solutions to
the questions.



It is observed that although students learn and apply simpler
concepts, they do not apply more complex concepts as often.
When presented with a task which needs application of a
complex concept, students in fact put to use their knowledge of
simpler concepts rather than complex concepts. This implies
that although the bottom up technique is employed by
educators in teaching, students don’t employ or are not able to
employ the bottom up technique of constructing concepts in
learning.
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