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Abstract— In this paper we present the results from a class room 

setting based experiment to test the validity of the bottom up  

technique employed in teaching concepts in the domain of 

computer programming like branching, looping, nested looping, 

procedures, recursion, etc. Programming knowledge concepts are 

generally taught in an order of increasing complexity of 

comprehension, like branching before looping before recursion 

and so on. The null hypothesis is that with the knowledge of 

simpler concepts, students can then learn and apply increasingly 

complex concepts.   We test this technique by asking students to 

review example LOGO programs and their corresponding 

correct outputs and then perform increasingly complex 

programming tasks which will require them to apply the 

acquired knowledge from the examples. It is expected that after 

reviewing complex programs the students too will be able to 

perform increasingly complex tasks thus demonstrating concept 

knowledge. The student performance on the tasks is measured by 

comparing the student generated program and the expert 

generated correct solution in terms of a parameter called 

cognitive complexity (CC). It is seen from the preliminary results 

that although students consistently learn and apply simpler 

concepts, they do not learn and apply complex concepts to solve 

tasks as often. 
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I. INTRODUCTION  

Jean Piaget [14] proposed the theory of constructivism as 
an exhaustive explanation for learning at different stages of a 
human life. The theory gives an explanation for cognitive 
development of concepts in human concept learning where in 
at every stage of learning, the cognitive concept map a human 
is assumed to possess is modified as new concepts is learned 
and prior concepts are discarded. According to the theory, a 
learner acquires new knowledge through the processes of 
assimilation and accommodation. Based on the previously 
acquired knowledge, a learner decides to put the new incoming 
concepts into context following one of the processes. New 
concepts at higher levels of abstractions are formed as 
knowledge is internalized from information. In assimilation the 
human cognitive concept map is not restructured, but in 
accommodation the map needs to be restructured to fit in the 
new concepts. Thus, according to the constructivist view of 
teaching students should learn higher level programming 
concepts from lower level concepts, which justifies the bottom 
up technique of teaching programming concepts. The general 
method of teaching programming concepts domain is a bottom 

up approach where the educators starts from the simplest 
concept and builds the knowledge by incrementally introducing 
more complex concepts. This teaching technique mimics the 
constructivist view of teaching. 

An experiment is conducted in which the students are first 
presented with LOGO programs and the corresponding correct 
output for every program. Students are allowed to study the 
programs and form concepts i.e. attach semantics to the 
structural constructs of the program in their minds.  

  
 

to circ :radius 

repeat 360 [fd 2*3.14*:radius/360 rt 1] 
end 

circ 10 

  

Figure 1.  Example LOGO program to draw a circle using “repeat” statement 

The students then take an untimed test where in they have 
to answer “constructive questions”. Constructive questions are 
simply question such that they require the knowledge of 
prerequisite concepts to be able to be answered correctly and 
they progressively are based off the ability of answer the 
previously posed questions correctly. The programs generated 
by the students and the ideal solution programs for the 
problems are then evaluated for their cognitive complexity and 
compared. Cognitive complexity (CC) is chosen as a 
measurable parameter for two reasons namely, CC is 
fundamentally inherent to any software code or any piece of 
information for that matter and also because there has already 
been extensive research on the computation of CC using 
software metrics for simple software systems. Concept learning 
involves lot of other activities which go hand in hand with 
learning like comprehension, storing, encoding, decoding and 
retrieval of concept knowledge [3].     

Parker and Becker [11] conduct a very similar experiment 
though they do not base their study on a conceptual knowledge 
representation. In another work, Soloway [4] details how 
construction of mechanism and explanations occurs in minds in 
the form of detailed plans as a result of programming 
assignments. Although the work lacks empirical measures it 
gives interesting explanations of how programmers selectively 
chunk information in an incremental manner to form 
explanations and mechanism. It too lacks a conceptual view of 
knowledge; however it still reiterates the existence of 
constructivism in learning programming concepts.  



II. GRAPHICAL REPRESENTATION OF CONCEPT KNOWLEDGE 

Cognitive concept maps are representations of concept 
knowledge in the human mind. We give a simple graphical 
approach for representation of cognitive maps based on 
constructivist theory of learning.  

The concept map is a directed cyclic graph in which a node 
represents a concept and the edges represent the relationship 
between the concepts. The relationships can have various 
semantics associated with them however all of them are 
abstracted to a higher level of relation called has-prerequisite 
relationship. The children nodes of a concept node represent 
the prerequisites for that concept node. It means that the 
knowledge required to comprehend a concept is given by the 
immediate children of the concept node thus emulating the 
importance of prior knowledge in comprehension of a node. In 
essence, to comprehend a particular node it is essential to 
comprehend all its children nodes first, and to comprehend the 
children nodes, we need to comprehend their children nodes 
and so on. For example in programming concepts concept map 
shown in Figure 2, to comprehend the concept of “looping”, 
student first needs to comprehend all its prerequisite concepts 
i.e. while and repeat. Given all the requisite knowledge 
required to comprehend a particular concept the students 
should voluntarily engage in an active discovery of knowledge 
and construction of concepts at a higher level of abstraction. 
The objective of any teaching technique is to impart this 
graphical representation to a student. A student is said to have 
“learned” the programming concept knowledge domain when a 
student has acquired, for example, a concept map like Figure 1. 
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Figure 2.  Example concept map for programming concepts 

III. EXPERIMENT METHODOLOGY AND SETUP 

Students are given LOGO programs along with their correct 
outputs. LOGO is an educational programming language 
developed by a group led by Seymour Papert at MIT in the 
1950‟s and is based on the principle of constructivism. The 
most popular component of LOGO is the turtle graphics 
component which allows the users to draw simple or very 
complex shapes by commanding the turtle to move in a desired 
way. Writing programs to first draw simplistic shapes and then 
progressively modify the program to draw more and more 
complex shapes exhibits typical constructivist bottom up 
concept learning behavior. Another reason that LOGO was 
chosen was that it is extremely simple to learn in a very short 

span of time. In fact no syntactical knowledge or knowledge of 
any programming paradigm is required to play with turtle 
graphics. Any person with reasonable knowledge of very 
simple concepts likes programs, loops, branches etc. can look 
at a LOGO program and should be able to figure out the 
working of a program.  

There have been a number of studies on the effectiveness of 
LOGO in education. It is debated whether programming is 
mostly a syntactical learning issue and should not be 
considered more than that, or if programming had a lot of 
implicit advantages in developing the cognitive thinking 
abilities of students [8, 12]. Papert conducted an extensive 
research project on the effectiveness of LOGO, named as the 
Brookline LOGO project. However it turned out that LOGO 
was not a factor in development of cognitive skills in students. 
Kurland et al. [8] in a study examined if LOGO aided in the 
development of general thinking skills other than programming 
and found the observations to the negative. R. Pea, Kurland et 
al. [7] also studied the cognitive effects of learning computer 
programming and mental models of children while learning 
recursive LOGO programming. All of these studies were 
extensive both in period of time and observations, which 
harmed the original intent of observing concept learning and 
skills acquisition. 

In this study we attempt to measure the how effective is the 
technique of teaching concepts in a constructivist theory 
fashion by the use of LOGO programs.  Students are first asked 
to fill out a pre-test questionnaire consisting of questions about 
their programming experience, programming knowledge, 
number of projects undertaken, etc. This information is later 
used to calculate a parameter of the student behavior as 
governed by his/her experience, prior knowledge etc. Then the 
students are asked a set of questions, first based on simple 
programming concepts like sequential statements, branching 
(if-then-else) and looping (repeat). Progressively the questions 
get complex, in the sense that they progressively are based on 
concepts at a higher level of abstraction in the „programming 
concepts‟ concept map like in Figure 2. Gradually the questions 
are based on procedures, nested looping and recursion. The 
intuition behind this is that after having seen a few example 
programs demonstrating the concepts in practice, the students 
assimilate the knowledge of these basic concepts and then 
constructively use these concepts to internalize newer concepts 
at a higher level of abstraction. Parker and Becker [10] list 
some interesting properties which any constructivist question 
set should have and we believe our set of questions does follow 
these properties. 

IV. COGNITIVE  COMPLEXITY 

The cognitive structures in the mind are not directly visible 
so we need a theory to use the observable behavior as one of 
the parameters to evaluate a student‟s performance [15]. Here 
the observable behaviors are the programs produced by the 
student which are a direct result of the student‟s acquired 
concept knowledge. We parameterize the code produced by the 
student in an attempt to give solution to the question, by the 
cognitive complexity of the code. The cognitive complexity of 
software is defined as “those characteristics of the software 
which affect the level of resources used by a human/system to 



perform a given task on it” [2]. In more general terms, Basili 
[1980] defined cognitive complexity of software as the 
resources expended by a system, human or other, while 
interacting with a piece of software to perform a given task [1]. 
The resources referred to in these definitions are the concepts 
which the student has acquired from learning the previous 
concepts. Since the student obviously can comprehend a 
program written by him/her, it follows that the cognitive 
complexity measure of the final product program is a good 
indicator of his/her level of comprehension and consequently 
learning. 

A. Cognitive processes in program comprehension 

Chunking and tracing [17] are the two main processes 
which are generally believed to occur during the 
comprehension of programs. Chunking is the process in which 
a student recognizes a group of statements (not necessarily in 
order) and extracts information from these statements to form 
abstraction about the software. The process of navigating 
through the code to look for chunks is called as tracing. The 
processes of chunking and tracing are essential elements of the 
physical comprehension process and therefore directly 
contribute to the cognitive complexity. Therefore, we device an 
approach to calculate the total cognitive complexity based on 
the chunking complexity and tracing complexity from 
previously published approaches. 

There are generally two views of comprehension by 
chunking. According to Sheiderman and Mayer learner utilizes 
both semantic knowledge and syntactic knowledge [17]. By 
chunking syntactic knowledge common concepts are grouped 
to a single concept at a higher level of abstraction forming a 
multi-leveled representation of the program. Semantic 
knowledge is nothing but conceptual representation of program 
structure like simple loops to more complex structures like 
whole algorithms. This semantic knowledge is relatively 
independent of the syntactical knowledge of programming 
languages. This view of comprehension fits very well with our 
conceptual representation and constructivist learning theory. 
Another view is that of Ehrlich and Soloway [5], which says 
that learner‟s form control flow plans and variable plans by 
chunking pieces of code based upon appropriate roles. We 
believe this again reverts back to the semantics of conceptual 
representation wherein roles represent concepts. 

B. Factors affecting chunking 

Cant et.al. [2] list a number of factors affecting the 
complexity of chunks. We classify these factors according to 
Rauterberg‟s generic definition of cognitive complexity of a 
system in terms of behavioral complexity (BC), system 
complexity (SC) and task complexity (TC). Cognitive 
complexity (CC) is then defined as CC=SC+TC-BC. The 
factors affecting chunk complexity classified accordingly are, 

 Task Complexity 

o F1- Chunk size 

o F2 - Type of Basic Control Structure [19] in 
which the chunk is enclosed. 

 System Complexity 

o F3 - Recognizability e.g. programming 

paradigm, rules of discourse, cohesion. 

o F4 - Visual Structure layout (grouping of 

chunks etc.). 

 Behavior Complexity 

o F5 - Familiarity (experience, speed of recall 
etc.). 

 

Thus according to Rauterberg‟s CC formula [15], 

F5-F4F3F2F1CC   (1) 

 

C. Calculation of Factors 

The first factor F1, chunk size is calculated as the 
standardized chunk size in lines of code. The programs used for 
the purpose of this experiment were very small and therefore 
we decided to use a normalizing factor of 100.  

100
tan

LOC
sizechunkdardizeds   

 

(2) 

 

TABLE I.  WCBCS WEIGHTS 

Category BCS Weight WCBCS 

Sequence Sequence 1 

Branch If-then-else 2 

 Case 3 

Iteration For-do 3 

 Repeat-until 3 

 While-do 3 

Embedded Function call 2 

 Recursion 3 

 Nesting 3 

Concurrency Parallel 4 

 Interrupt 4 

The calculation of F2 is a bit complex and equally important 
factor in the calculation of cognitive complexity. The 
complexity of the code enclosing the chunk is important 
because the structure will represent some acquired concept in 
the cognitive map after student has internalized the information 
obtained from the chunk. Therefore we calculate the 
information complexity (IC) of chunk enclosing code in this 
factor. Wang has identified 7 types of structures called as the 
Basic Control Structures (BCS) which can enclose the chunk 
and can therefore contribute to this factor [18, 19]. These 
BCS‟s are weighted according to their intuitive complexity in 
comprehension and empirical estimation. As it turns out, 



concepts at a higher level of abstraction in the programming 
tasks concept map have a higher weight value (WCBCS). The 
weights for types of BCS are given in Table 1.  

In our experiments, the maximum weight of the BCS we used 
was 3. To calculate the information complexity (IC) we use 
Khuswaha and Misra‟s [9, 10] definition given by,  

WCBCS
LOCtotal

LOCeachofcontentnInformatio
IC    

(3) 

 

Information content in each LOC is calculated as the 
summation of all the operators, operands and identifiers in that 
line of code.  

kkkk sidentifieroperandsoperatorsLOCInfo ).(  (4) 

 

For our LOGO environment, we have defined as the LOGO 
reserved words or commands as the operators, any variables, 
words or lists used as operands and any other words like 
procedure names as identifiers examples as shown in Table 2. 

TABLE II.  ELEMENTS OF INFORMATION IN LOC‟S. 

Operators Operands Identifiers 

FD, BK, LT, RT, 
REPEAT, TO, 
END, HOME, 

CS, PU, PD, etc. 

:count, :size, 
:sidea, :sideb etc. 

circle, square, 
spiral, sqrspiral 

etc. 

 

The formula to measure WCBCS is given by amplify the effect 
of weights of the BCS‟s.  

22

2

2

1 ... nBCSBCSBCSWCBCS   (5) 

 

Other complexity calculation parameters which are often used 
are Halstead‟s software metrics, McCabe‟s cyclomatic 
complexity, Klemola‟s KLCID complexity metric, etc.  

From the behavior data we collected, all except 1 student 
from the test set had 0 knowledge of LOGO environment. 
Therefore we decided to assign a value of 1 for system 
complexity combined for factors 3 and 4. The value of 
behavior complexity factor F5 is calculated from the data 
obtained from the pre-test questionnaire. A total of 19 students 
took this test, 2 of whom were girls, 5 were non computer 
science majors. The students were either labeled as experts (>3 
years of programming experience) or novices (<3 years). The 
students were asked to rate themselves in their knowledge of 
programming languages, experience in programming, 
experience in LOGO, number of projects etc. The values 
collected were then standardized for the group, i.e. the value 
for each student was divided by the highest value in that 

category and the behavior complexity was then calculated by 
simply averaging all these values.  

Once all the values for all the factors were calculated the 
total cognitive complexity was calculated using the eq.1. These 
values were calculated for each solution for each student. 

 

D. Example IC calculation for a simple LOGO program 

 
to spiral :size 

if :size > 50 [stop] 

fd :size rt 15 

spiral :size * 1.02 

end 

spiral 10 

 

Figure 3.  Example LOGO program to draw a spiral 

Operators=7 (in 6 LOC) 

Operands=4 (:size in 4 LOC) 

Identifiers=3 (spiral in 3 LOC) 

Total = 14 

Total LOC = 6 

BCS=(sequential, if, recursion, procedure call) 

WCBCS=[1
2
+2

2
+3

2
+2

2
]=18 

IC = 14/6*18 = 42 

V. OBSERVATIONS AND RESULTS 

Once we calculated the cognitive complexities for each 
solution for all the students we compare them to the cognitive 
complexity of the correct solution for each question. The 
correct program solution is generated by an expert in the field 
and does not contain erroneous or extraneous statements or any 
elements which can artificially inflate or deflate the values of 
cognitive complexity. We compare the behavior of the graphs 
for each of the 19 students, plotted from the CC values 
generated from the solutions for the 9 questions in the test, 
against the expert‟s graphs generated from the CC values 
generated from the ideal solution. Therefore the desired graph 
would be one which follows the ideal graph (or referred to as 
expert‟s graph). A lower CC for a particular solution implies, 
the students‟ solution did not contain BCS‟s with the weights 
as much as the expert‟s solution contained. This in turn implies 
that the student wasn‟t able to reproduce in practice the BCS 
with greater weights i.e. ones which are at a higher level of 
abstraction. This could have 2 possible explanations, the first 
one is that student did not understand the basic concepts itself 
on which to base the higher concepts on, or students did not 
understand higher level concepts in spite of comprehending 
lower level concepts thus demonstrating an absence of 
constructivist concept learning. If the former is true, then that 
observation can be validated by checking the corresponding 



CC values for those lower level solutions. The plots for the 
students against the expert‟s graph can be seen in Figure 4.  
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Figure 4.  Student CC vs. Expert CC 

It can be seen from the graph that most of the student CC 
graphs follow the expert CC graphs in behavior although not in 
values. It can also be seen that till question 5 most of the 
student CC graphs are equal to or above that of expert CC 
graph implying the comprehension of lower level concepts 
asked in the questions at the beginning of the test. However for 
question 6 and further the behavior of the student CC graphs 
becomes erratic. Some graphs follow the experts graph while 
some don‟t, but the consistency of behavior is not maintained. 
Particularly for solution to question 6, the graphs are especially 
erratic. This maybe because question 6 required the student to 
demonstrate the knowledge of nested looping. Although quite a 
few students were not able to answer this question correctly 
there were a few students who demonstrated through their 
solutions the ability to internalize higher level concepts like 
nested looping from simple looping. Figure 5 shows the 
behavior of average and median of student CC graphs against 
the expert CC graph to get a more general view of the 
behaviors. 
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Figure 5.  Student Average, Median CC vs. Expert CC 

It can be seen from this graph that both the average and 
median CC graphs for students follow the same behavior in 
between themselves and the expert CC map too, except for 
question 6 which in fact was the nested looping question. In 
Figure 6 we plot the difference between the student CC values 
and expert CC values to highlight the students with CC graph 
behavior closest to the experts. In this way we can identify 
students who have near ideal graphs and compare their scores 
for the individual question to validate the results if necessary.  

Difference Analysis
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Figure 6.  Difference analysis  

It is seen that for question 1-3 there is almost little or no 
difference in student and expert CC graph behavior for most 
students. However after these questions, when higher level 
concepts start being questioned, the difference between the CC 
starts beginning to appear. Except for some outliers the 
difference remains uniform till question 6. After this however, 
the erratic behavior of the student graphs start. It will be very 
interesting to investigate the exact nature of causes for this 
happening. 

In Figure 8 graph we first determine the correlation 
between the CC values for students and the CC values of the 
expert and then plot against the behavior complexity of 
students. Not surprisingly the two graphs follow very closely in 
behavior indicating the validity of this method of measuring 
comprehension abilities.  
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Figure 7.  Correlation versus Behavior complexity 

VI. CONCLUSION AND FUTURE WORK 

In this paper we present a novel methodology to evaluate 
the bottom up technique for teaching programming concepts. 
The technique is based on theory of constructivism from 
educational psychology. Concepts are taught in an order of 
increasing complexity so that complex concepts can be learnt 
with the prior knowledge of simpler concepts. We test this 
technique of teaching in a classroom scenario where students 
are asked to answer specially designed questions and the 
solutions produced are compared with ideal solutions to make 
operational conclusions. On the basis of the parameter values 
we reason about the possible concepts which the student might 
have comprehended in the process of producing the solutions to 
the questions.  



It is observed that although students learn and apply simpler 
concepts, they do not apply more complex concepts as often. 
When presented with a task which needs application of a 
complex concept, students in fact put to use their knowledge of 
simpler concepts rather than complex concepts. This implies 
that although the bottom up technique is employed by 
educators in teaching, students don‟t employ or are not able to 
employ the bottom up technique of constructing concepts in 
learning.  
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